Time Estimate: 4-6 hours.
Important MATLAB commands that will be used: for, while, if, break, format, plot, semilogy, zeros.
Turn in your code, results, and required plots. Use the diary function
when necessary or helpful. Be sure to annotate your plots appropriately
by labeling your axes, giving the plot a meaningful title, and possibly
labeling different lines in the same plot via the legend
command.
Write a function mysort.m
that will take in a vector of any size and sort
it from least to greatest. Use the strategy of comparing neighbors and swapping
them if necessary. If this process is done throughout the entire vector
repeatedly enough times, it will work. Rewrite your code so that it does not
go through the matrix too many time using first the commands if, break
and
then by switching the outer loop to use a while
command.
Suppose you opened a savings account that promised a 100% interest rate
(typical rates are closer to 2.25% today). We are going to try and calculate
how much money that account would have after one year depending on how the
interest is calculated. We will assume that we open the account with $
10,000.
If r is the annual interest rate, then after one year assuming the interest is only compounded once a year, the amount after a year is just (1 + r)B where B is the balance before the interest. With B = $10,000 and r = 1.00 we have exactly $20,000 after one year.
If the interest is compounded every six months, then after six months, the balance would be B2 = (1 + r/2)B or in this case $15,000. After another six months the other half of the interest is applied but this time to B2 so that the ending balance is given by
Similarly if the interest was compounded quarterly the ending balance would be
and the balance at the end of jth quarter would be given by
Before you begin, enter the command format bank
. What did that command do?
Compute the final balance after one year of the initial investment of $10,000
at r = 1.00 or 100% interest if the interest is compounded semi-annually,
quartely, monthly, and bi-weekly. Hint: one of your answers should be 26130.35.
Now we will compound the interest weekly. Let's use a for
loop to
compute not only how much money we will have in our account at the end of
the year but each week as well. Use the command
B=zeros(53,1)
to create a column vector of zeros where we will store the account balances. Let
B(1)=10000
to set the initial balance. Next we need to compute the interest after each
of the 52 weeks. We can use either of the following formulas,
or
We can use the following code to evaluate the former formula
for j=1:52 B(j+1)=(1+1.00/52)ˆj * B(1); end
Now we can plot the results using the plot
command: plot(B)
Turn in a copy of your plot. Repeat the calculation using the equation
making the appropriate adjustments to code given above. Either way you should get the exact same plot and a final value of 26925.97 for B(53) .
Bonus: Can you think of a way to calculate the same vector B
in one line,
without using a loop?
As the number of compounds increases, the final amount appears to be get
closer to some final value. In order to check this, let's compound the interest
every second. Compute the result of compounding the interest every second on
$
10,000 at r = 1.00 interest and check your answer versus the command
exp(1)*10000
How close are these two numbers? Note: the command
exp(1)
calculates e^1 or just e where e is a mathematical constant.
Search e (mathematical constant)
in Wikipedia and look under the history
of e. Does anything look familiar? The e
is the same value used
commonly in exponential and natural logarithms.
At this point I am going to make a guess that
I am going to also guess that the approximation is better for larger values
of n
until for n
large enough, it will be essentially perfect.
Mathematically, that is to say that limit as n goes to of
(1 + 1.00/n)^n is e, or
In fact the above statement is the definition of e. Let's test this idea of a
limit, though. Using the model for for
loops above create a vector of 20
values for n
where with j = 1, …, 20. Then for each of
the values of n, again using a
for
loop, calculate
for j = 1, …, 20. Plot the values of a.
Next plot e − a. You should see a graph that is not very informative
since the values quickly go to zero. Instead we will plot the graph on a log
scale on the y-axis by entering the command
semilogy(exp(1)-a)
You should now easily be able to see that as n increases the value of
(1 + 1.00/n)^n approaches e since exp(1)-a quickly goes to zero.
Turn in all plots.
Bonus: What happens if you let j = 1, …, 60? What happens if when you
let for j = 1,…,16? Can you make a reasonable guess as to
what's happening here?
Using the same procedure as in the previous problem, confirm that
by calculating approximations and storing them in a vector a using the
same values for n and j as used above. Plot e^0.754 − a on a log
scale in y. Turn in your plot. Note: e^0.754 is computed in MATLAB by
the command exp(0.754)
.
We have used several MATLAB functions so far. Now we are going to write our own function. In the main MATLAB window click File → New → Script (or File → New → m-file depending on your version of MATLAB). This will open a file editor. In the first line of the editor put the line
function Bal=InterestCalc(Investment,Rate,Yrs,Ncomp)
Hit Enter several times and then type
end
Any code that is between the function
command and the end
will execute
when you run the function. Somewhere in that function we need to define the
value for the variable Bal
which will be returned by the function.
Mathematically this is what the code needs to return
where Bal
will be the balance you would have after Yrs
years if you
invested Investment
amount of money at an interest rate of Rate
that
is compounded Ncomp
times per year. You need to use result previously
given to figure out exactly what function you need here. Save this function
as InterestCalc.m
in a directory for this class. Change the directory
you are working in by selecting the same directory in the main MATLAB command
window. You should now be able to test your function by typing
InterestCalc(1000,0.05,5,60)
which should return the value 1283.36.
Note: if you have more output line in the command window than just the one
number, add ;
to the end of each line of your function except the first and
the last line. Turn in the code for your function.
Enter the command format long
then verify the following properties of
exponentials and logarithms by testing the appropriate MATLAB functions with
the parameters indicated:
Note the log
function in matlab is the natural logarithm. How would you
calculate ,
, or
?