

Exact coherent structures in boundary layers

Tobias Kreilos

ÉCOLE POLYTECHNIQUE Emergent Complexity in Physical Systems group FÉDÉRALE DE LAUSANNE EPFL Lausanne, Switzerland

Outline

- Exact coherent structures in boundary layers?
- A simplifying case: the asymptotic suction boundary layer
- The edge state a particular coherent structure
- Application 1: nucleating turbulent spots in a noisy environment
- Application 2: edge state and relaminarization (pCf)

Exact coherent structures in boundary layers?

Exact coherent structures (a.k.a. invariant solutions):

- Fixed points (travelling waves)
- (Relative) periodic orbits

Exact coherent structures in boundary layers?

Exact coherent structures (a.k.a. invariant solutions):

- Fixed points (travelling waves)
- (Relative) periodic orbits

The asymptotic suction boundary layer

The asymptotic suction boundary layer

- True boundary layer flow, exact solution of Navier-Stokes
- Translational invariance

• $\delta_{99\%} = 4.6\delta$

 U_{∞}

- Simple laminar profile: $\mathbf{u}(\mathbf{x}) = U_{\infty} (1 e^{-y/\delta}) \hat{\mathbf{e}}_{x} V_{s} \hat{\mathbf{e}}_{y}$
- Laminar displacement thickness: $\delta = \nu/V_S$
- Reynolds number: $Re = \frac{U_{\infty}\delta}{v} = \frac{U_{\infty}}{V_s}$

Homotopy from plane Couette

Solutions in plane Couette

Which do we know?

All structures close to the wall \rightarrow "wall mode"

Kreilos, Gibson & Schneider, in preparation

Main structures far away from the wall \rightarrow free-stream mode

Kreilos, Gibson & Schneider, in preparation

Localization properties

- Exponential localization in spanwise and wallnormal direction
- EQ7-1 extends far into the free-stream

Spectrum of FSC

How are they connected to turbulence and transition?

Evolution in x-y plane

Evolution of FCS

Small periodic domain

Wall mode

Free-stream

coherent

structure

Deguchi & Hall, JFM 2014

The edge state

Finding the edge state Turbulence Laminar basin

Toh & Itano, JFM 2003 Schneider, Eckhardt, Yorke, PRL 2007

The edge state in the ASBL

Looks like we found a periodic orbit

Kreilos et al., JFM 2013

The edge state in the ASBL

Spanwise extended domains - localization

Khapko, Kreilos, et al., JFM 2013 Khapko, Kreilos, et al. EPJE 2014

Spanwise extended domains

Transition to turbulence

How are they connected to turbulence and transition?

Increasing the domain size

Khapko, Kreilos et al., in preparation

Zoom into a burst

Edge states in the ASBL

All show same qualitative behavior:

- Streaks flanked by vortices
- Vortices cross over the streaks
- Streaks break up
- Structures reform at shifted location

Which do we know?

Video by P. Schlatter

Binary representation

Binary representation

- 2-step model:
- Evolution of spots
- Nucleation of spots

Spot evolution: cellular automaton

- Proabilities fitted directly from LES simulations
- All probabilities are almost constant
- Values independent of intensity of free-stream turbulence
- Spot evolution is an activated process

Spot nucleation rate

- Question: when and where are spots created?
- Model inspired by state space structure

Spot nucleation rate

 Distribution of initial amplitudes → distribution of spot nucleations in space

Combining nucleation and spreading

Quantitative comparison

 Intermittency factor: fraction of space covered by turbulence

• Spot statistics

The state space

Sampling turbulent trajectories

Fitting parameters

Gumbel CDF:
$$F(\delta) = 1 - e^{-e^{\frac{\delta-\mu}{\sigma}}}$$

From return periods to lifetimes

Linear relation between approaches to the edge state and relaminarization!

Summary: coherent structures in BL

Which do we know? (ASBL)

	Periodic domain	Spanwise localized	Fully localized
Wall modes	Periodic orbit (edge) Traveling wave (Hall&Deguchi)	Periodic orbit (edge) Traveling wave	Chaotic edge state Traveling wave?
Free-stream modes	Traveling wave (Hall&Deguchi)	Traveling wave	?

• How are they connected to turbulence and transition?

- Edge states: marginally stable, define laminar-turbulent boundary
- Free-stream modes:
 - Interaction between turbulence in free-stream and wall
 - Transition by spotlike evolution + fast spreading along wall
- Where can we go from there?
 - Lifetimes are linearly correlated to return periods to edge
 - Edge inspired nucleation model for turbulent spots

Thank you to

- Tobias M. Schneider, Bruno Eckhardt, John F. Gibson, Taras Khapko, Philipp Schlatter, Dan S. Henningson, Yohann Duguet, Stefan Zammert, Hecke Schrobsdorff, ...
- John for providing and maintaining channelflow
- Greg, John and Joe
- You for your attention

The state space full slide

