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Conceptual framework

low-d dynamical systems



Lorenz system
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T =o(y— =)

Y=pr—yY — T2
= —0Bz+ 2y, oc=10, 8 =8/3, p=28

Equilibria at origin and

A,B=(E\Blp—1), /B(p—1), p—1) = (£8.48, +8.48, 27)



Lorenz system
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Eigenvalues at A,B

A = —13.8
Ao = 0.094 4 10.2



Lorenz system
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Equilibria organize the dynamics but are not part of the attractor.

The attractor is best characterized by its periodic orbits.



How to find the periodic orbits of Lorenz
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Construct 1-d Poincare section on nearly 2-d surface of attractor.

Parameterize as —1 <n < 1.



Poincare map
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Flow induces map from —1 < n < 1 onto itself: n,+1 = f(n,).
Associate —1 <7 < 0with Aand 0 < n <1 with B.

Note discontinuity of map at n = 0.



Lorenz Poincare map, 1st iterate

Graph of f mapping n onto itself: 1,1 = f(n,).
Period-1 orbit would have 7,1 = f(n7,) = nn.

No intersections of f(n) with identity = no period-1 orbits.



Lorenz Poincare map, 2nd iterate

periodic orbit AB

2nd iterate 7,12 = f%(n,) intersects identity at two points.

= one period-2 orbit = f?(n), symbol sequence AB AB AB AB . ..



Lorenz Poincare map, 3rd iterate

orbit AAB orbit BBA

3rd iterate 7,43 = f(n,) intersects identity at six points.

= two period-3 orbits n = f2(n), symbol sequences

AAB AABAABAAB... and BBA BBA BBABBA...

Find all 11101 period-n orbits and n-length symbol for n <20 *
* Viswanath (2008) Nonlinearity




Lorenz: periodic orbits
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Countably infinite set of periodic orbits, ordered by length and instability

Viswanath (2008) Nonlinearity



Lorenz: ensemble of periodic orbits
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AB, AAB, AAAB, AABB, AAABB and mirror images

Periodic orbits
e unstable, countably infinite, ordered by length or instability

e dense in attracting set (4 orbit arbitrarily close to any point on attractor)

e chaotic attractor is limit set of its unstable periodic orbits



Periodic Orbit Theory

Theoretical framework for analyzing chaotic attractors

properties of unstable orbits = time-avg statistics

Nonlinear ODEs induce linear PDEs on probability density functions
floz0) = z@t) = 4 :p(x,0) = pla,t)
Invariant measure = eigenfunction p of e** = 3" nbrhds of periodic orbits of f

Expansions produce trace formulae relating time averages to sums over orbits

/OO e Str et dt :tr — Z Z o
0

orbits p |det I DfJ_ )‘

Convergence is superexponential, but requires all orbits up to given period T

Ruelle, Gutzwiller, Cvitanovic, . . .

www.chaosbook.org



Numerical methods

can we do this for fluids?



Problems

e Infinite dimensionality, in practice very high-d numerics
e No symbolic dynamics to guide initial guesses for orbits

e |s Navier-Stokes regular? Hyperbolic?

On the other hand,

e \Viscosity strongly contracts high-order modes
e (Coherent structures suggest low-d organization
e Fast & accurate numerical simulation methods

e Blaze ahead without theoretical justification



Plane Couette flow

wallnormal

Navier-Stokes, BCs
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u(z + Ly, y,2) =u(z,y, 2+ L) =u(r,y,2), u(w,*l,2)==+1

Vu

Represent time evolution under Navier-Stokes as

u(t) = f*(u(0))




Problem formulation

Seek four types of invariant solutions

fi(u) = u, vt equilibrium
fflu) =7(t)u, Wt traveling wave
ff(u)=u, t=T1,2T,3T,... periodic orbit
ff(u) =ou, t=1T,2T,3T,.. relative periodic orbit

f* = time integration of Navier-Stokes
o = symmetry of Navier-Stokes and BCs
7(t) = phase shift, e.g. 7(t)u(zx,y, 2) = u(x — czt, y, 2 — c,t)

General invariance equation:

g(0,T,0) = f'(u) —ou=0




Numerical formulation

e Periodic orbit satisfies

g(u,T) = ff(u) —u=0  (f' = evolution by Navier-Stokes)

e Discretize u with spectral expansion

U(X, t) = Z fljkg(t) Tg(y) ezﬂi(jx/Lm—i—kz/Lz)
7,k

o Discretize f* with semi-implicit finite-diff time stepping (DNS)
e Nonlinear egn in O(10°) to O(10°) unknowns ks, T

e Solve with Newton-Kylov-hookstep algorithm of Viswanath, 2007.



Computing periodic orbits: Newton method

Find periodic orbit u*, 7 solution of g(u*,7*) =0

e Start with guess (u, T') near solution (u*, 7*)
uw'=u+ou, T*=T+06T
e Expand g in Taylor series

g(u, 17

(u+du, T +0T)
(w,T) + Dg (6u,dT)

) =g
O0=g

e Newton-step egn

Dg (0u,0T) = —g(u,T)

e Has form of Ax = b problem, solve for Newton step (du, 67

e Let(u,7)— (u+du, T+ dT) and iterate.



Solution of Newton-step eqn

Newton step egn
Dg (0u,0T) = —g(u,T)
Problem
Dy is huge: 10° x 10° to 10% x 109
Dg is not sparse
Dg too big to evaluate: 100 GB to 10 TB

Too big to solve directly: days to years for O(m?) direct algorithm

Solution

Solve with iterative Krylov-subspace method, GMRES.



GMRES algorithm (Generalized Minimum Residuals)

Solve m x m system of eqns Ax = b with m = O(10°)
Define n-dimensional Krylov subspace of C™ for n < m

K1 = span{b}

Ko = span{b, Ab}

K3 = span{b, Ab, A*b}

K, = span{b, Ab, A*b,..., A" b}
Note that AK,, C K, 1.

Construct orthonormal basis for K,, via Gram-Schmidt orthogonalization

K, = span{q: }

Ky = span{qi, g2}

K3 = span{qi, g2, q3}

K,, = span{qi,q2,q3,---,qn}

Then AQ,, = Q,+1H, where H,, is (n + 1) x n, and Q,, has columns ¢1, ..., q,.



GMRES iterative solution of Ax =0

Given AQ,, = Q,+1H, for (n+ 1) x n H, and cols of Q,, span K,

The following minimization problems are equivalent

min
min
min

min

Ax, — b2 over z,, € K,
AQnyn - b||2 over y, € cr
Qni1Hypy, — b||2 overy, € C"

Hnyn - ;;+1b||2 over y, € cr

Last equation is low-d least-squares problem, (n + 1) x n for n < m.

Given solution y,,, approximate solution to Az =bis z,, = Q. yn.

K, = span{b, Ab, A°b, ..., A"~ 1b} aligns with leading eigenspace of A.

Thus z,, converges quickly if b is dominated by leading eigenspace of A.



GMRES convergence
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Computation of Newton step for periodic orbit of plane Couette flow

e m =2 483 ~ 10° unknowns
e periodic orbit has 3 unstable eigenvalues

o Newton step converges to 102 accuracy in n = 20 iterations



GMRES as a “matrix-free” computation

GMRES requires computation Ax for test values of x, not A itself.

For Newton-step egn, Ax corresponds to operator on LHS

Dg (0u,0T) = —g(u, T)

Approximate LHS operation with finite-differencing

Dg (6u,6T) = g(u+du, T +6T) —g(u,T)

Substitute g(u,T) = ff(u) —u

Dg (6u,6T) = f'"(u+du) - f(u) —ou

Each GMRES iteration takes one DNS time-integration f7+°7

No need to compute or store Dy.



Hookstep trust-region modification of Newton method

Problem: Newton step goes haywire if guess is far from solution (u*, 7*)
Solution: Instead of taking Newton step from Newton egn

Dg (0u,0T) = —g(u, T),
minimize the residual of the Newton egn

IDg (0, dT’) 4 g(u, T)|2

with constraints ||(éu, 67)|| < R and (éu, 6T) in Krylov subspace

e Calculable from (n + 1) x n SVD of H matrix from GMRES.
e Adjust R based on accuracy of local linearization.
e Forsmall R, hookstep = gradient descent on Newton-eqgn residual.

e Forlarge R, hookstep = Newton step.

Viswanath (2007) JFM 580, Dennis & Schabel (1996)



Newton-Krylov-hookstep convergence

0 100 200 300 400 500 600 700
# evaluations of ' (u}

Hookstep increases convergence region of search by orders of magnitude

each dot is one Newton/hookstep iteration
typical: long creep downhill (gradient) then rapid convergence (Newton)
unusual: very good initial guess, immediate rapid convergence

equilibria take a few CPU-hours; periodic orbits one CPU-day (minimal flows)



Initial guesses for Newton-Krylov-hookstep search

0 L r
600 700 800 900 1000 1100 1200
1

r(t,T) = D) w0

Get initial guesses (u, T') from close recurrences f%(u) —u ~ 0
Compute long time series of data u(t) by DNS
Look for local minima of recurrence residual ||u(t +7T) — u(t)]|

Circles mark guesses that converged to periodic orbits, X’s mark failures.



Results



Results for plane Couette flow, minimal flow unit, Re = 400

e ((20) equilibria, O(50) periodic orbits, O(5) heteroclinic connections

o Well-resolved states of DNS, dense in 1, on 48° grid

() = 3 g Tily) e/ /1
j7k7£

e Spatial resolution O(107°), temporal resolution O(10™%).
e Satisfy discretized invariant equation f%(u) — u = 0(10~13).

e 0(10) unstable eigenvalues << O(10°) stable eigenvalues.

Well-resolved, fully nonlinear DNS computations, no modeling.



Plane Couette equilibria: Nagata, Busse, Clever, Waleffe solutions

EQ1, lower branch EQ2, upper branch
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1 unstable eigenvalue!

Nagata (1990) JFM 217; Clever & Busse (1997) JFM 344; Waleffe (2003) Phys. Fluids 15; Wang, Gibson, Waleffe (2007) PRL 98
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Equilibria

EQ5, lower branch
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Equilibria organize dynamics: state space portraits
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10°-d DNS u projected onto 3d space spanned by a few EQBs
Dots = equilibria

Lines = unstable manifolds, heteroclinic connections, computed with DNS



Equilibria organize dynamics: heteroclinic connections

0.2r
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0|.4
Animations:

e EQ4 — EQ heteroclinic connection:  [3d movie] [z-average movie]

e EQ4 — 7.,EQ; heteroclinic connection: [3d movie] [x-average movie]
e [movie of transient turbulence]

Halcrow, Gibson, Cvitanovi¢, Viswanath, (2009) JFM 621
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Periodic orbits replicate statistics

mean flow Reynolds stresses
15 | |
10} 00 %4

5 10t §
= 8
3 E:
= >

5t e

0 0 10° = 0 i

y" y

Wty (utet) (@t (w)

Turbulent flow (lines) versus T' = 121 periodic orbit (symbols), Re = 400
Typical orbits have mean flow to 1% and Reynolds stresses to 5-10%.
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Spatially localized traveling waves of channel flow

TW2-2

e concentrated, alternating, tilted, near-wall streamwise rolls
e centered over low-speed streaks, flanked by high-speed streaks

e large streamwise velocity deficit in core, relative to laminar



Comparison to sinuous boundary-layer structures
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Stretch (1990) Schoppa & Hussain (2002)
educed from DNS data transient growth mode

TW2-1: exact traveling wave of channel flow
same orientation of swirling, wall-unit length scales
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normalized y-avg (u,w) flow

y-avg energy

small nonlaminar spot decaying exponentially to laminar flow
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Key conclusions

Exact coherent structures = invariant solutions of Navier-Stokes.
Computed as exact solutions of DNS.

Replicate observed flow features: roll/streak structures, bursting, mean flow,
Reynolds stresses.

Low-d instabilities, dynamics wanders within low-d unstable manifolds.
Observed coherent structures = close passes to exact coherent structures.

Provides precise, model-free, low-d approach to transitional turbulence.



Questions and directions

e High Reynolds numbers

e Multiple-scale solutions

e Extended flows, localized solutions

e Open flows, e.g. boundary layer

e Dynamical models based on low-d linearization about orbits

e Statistics via periodic orbit theory

Thanks to collaborators:

Predrag Cvitanovic, Jonathan Halcrow, Divikar Viswanath,

Tobias Schneider, Evan Brand.
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