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Introduction

Stratified Turbulence: Phenomenology & Significance
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—Thorpe (1971)

—1024x1024 DNS (C. Rocha)

@ Ubiquitous in world's oceans and atmosphere
@ Controls diabatic mixing (e.g., crucial for closing ocean circulation)

@ SGS process in regional circulation and in computational climate models
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Introduction

Stratified Turbulence: Scales and Parameters

Buoyancy frequency N = _84dp
Po dz
Rotating 3D
turbulence Stratified turbulence
| | turbulence |
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Wl = Y
@ Oceans: L <10 km, Lo~1m @ Reynolds number: Re = %
@ Atmosphere: L <100 km, Lo ~ 10 m @ (Horizontal) Froude number. Fr= 4%

Simple scaling arguments give L/Lo = O(Fr=*/?), where Lo = (¢/N*)*/?
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Introduction

Stratified Turbulence: Computational Challenge

106

10°

Viscosity-affected stratified flow

—Brethouwer et al. (2007)
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Introduction

Stratified Turbulence: Fundamental Questions

@ What sets vertical scale?
@ Mixing properties?

@ Is horizontal spectrum of horizontal KE independent of Fr as Fr — 0 for
Re > 10/Fr*?

Bartello & Tobias (2013) estimate that to demonstrate this independence even over one
decade in Fr, namely, over the parameter range 0.01 < Fr < 0.1, would require the ratio
of maximum to minimum resolvable scale to be in the millions (i.e. in a single spatial
direction), yielding a formidable computational challenge.
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Derivation of Multiscale Reduced Model

Stratified Turbulence: Governing Equations

Anisotropic Scaling

xi:L z:h t:L/U u U w: Fr’UL/h p:pol? b:U?/h

Non-Rotating Boussinesq Equations
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where: D=1 [V] + 58] and a = h/L, Fr= U/(NL)
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Limit Equations

e Fr/a — 0 as Fr — 0 (Lilly 1983): Layerwise 2D flow
e Fr/ac = O(1) as Fr — 0 (Billant & Chomaz 2001): Anisotropic 3D flow

.
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Derivation of Multiscale Reduced Model

Emergence of Multiple Vertical and Horizontal Scales

—Waite (2014)

@ As Fr — 0, vertical length scale self-adjusts so that h = O(U/N) = « = O(Fr)

@ Stratified turbulence regime defined by Fr — 0 with:

a = O(Fr) and buoyancy Reynolds number R = ReFr*> > 10|

@ Clear evidence of shear instabilities on horizontal scales | < L, and perhaps
modulation on O(L) vertical scales

... Opportunity for asymptotically-reduced multiscale modeling. . .
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Derivation of Multiscale Reduced Model

Multiple Scale Asymptotic Analysis

“pancake” (large/slow)

Waite (2014)

patch of turbulence (small/fast)
@ Identify relevant distinguished limit: o = Fr and R = ReFr’ = O(1) as Fr — 0

@ Introduce fast horizontal and temporal scales: x1 = x, /Fr and 7 = t/Fr so that

1 1
VL —>Vx+ﬁvx 6t_>at+ﬁ87

@ Introduce fast averaging operation and mean/fluctuation decomposition:

d(x1,z,t) = d(x1,%x1,2,7,t) = d(x1,z,t) + ¢ (xL,x1,2,7,t), where ¢/ =0
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Derivation of Multiscale Reduced Model

Expansion Ansatz

@ Introduce € = v/ Fr and posit following asymptotic expansions for various fields:

[ur,b,p] ~ [uoL,bo,po] + €lurs, by, pi] + € [uas, bo, po] + ...
W ~ e 'W_i+Wo+eWs+...

@ Key prescription is that vertical velocity (normalized by aU) is no larger than
O(e™*) on fine horizontal scales

@ This (re-)scaling ensures that feedback of fluctuations upon mean fields through

vertical Reynolds stress divergence 0, [W’u’l] arises at proper order:

Dominant balance with tendency 0:u, and vertical diffusion R‘lﬁﬁﬁL

Rescaling simultaneously ensures that fine-scale dynamics are isotropic

@ Can then deduce that fluctuating horizontal velocity, buoyancy, and pressure fields
arise at O(e), a key simplification
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Multiscale Model
Multiscale Reduced PDEs

Mean Equations

_ ___ 1 _
[& + (Fos - Vi) + Woaz}ﬁm_ +0, (W) = Vi + 7 Ot0L +fou
0 = _azﬁo A EO
Vi UL + 0:Wo = 0
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[at © (Bor - Vi) + Woaz] bo + 0. (WLB) = ~Wo+ 5otk
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Multiscale Model

Multiscale Reduced PDEs

Mean Equations

[3t (o - V) + Wo0, }UOJ_ + 0, ( 1”1J_) = —Vip, + 8 uoL + fou
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Fluctuation Equations
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Multiscale Model

Attributes of Multiscale Equations

@ In absence of Reynolds stress (“eddy-flux") divergences (RSDs), mean equations
reduce to hydrostatic primitive equations (Billant & Chomaz 2001)

@ Vertical RSDs provide crucial feedback of fluctuating fine-scale dynamics on
evolution of mean fields, given here without need for ad hoc closure

@ Fluctuation dynamics are quasi-linear (QL) about local mean fields:

o Reverting to single of (x1,t) scales yields [and interpreting (-) as strict
horizontal mean] yields a QL reduction of full Boussinesq equations

o Suggests 2nd-order cumulant expansion (CE2) approaches used by
Marston & Tobias, Farrell & loannou, and Young & Srinivasan can be
formally justified for stratified shear turbulence in the limit Fr — 0

@ By retaining multiple horizontal and temporal scales, can rationally extend popular
QL/CE2 schemes = Spectral space interpretation has led to considerably more
accurate GQL/GCE?2 formulation (Marston, Tobias & Chini 2015)

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 11 /18



Results

Preliminary QL Results for Sinusoidally-Forced 2D Flow: fox = (m?/R)sin (mz)

Linear Stability of Laminar Mean State (m = 3, R = 200, Fr = 0.02)

6 Py
030 | Growth rate - & n\/ort\mlty\
5
Z 025
£ L W - .
@02
© N3 ——
£ 015
H b
2 010 2 T R 7
£
0.05 B —
o'i‘)o 0.5 10 15 2.0 25 3.0 35 /2 E 3m/2 E2g
wavenumber X
6 " n 6
Vertical velocity Buoyancy
s S —— “
® L] ® L]
. P —— —
- » »»
N 3| N3 i ————
2k R B

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 12 /18



Results

Preliminary QL Results for 2D Flow: Evolution of Fluctuation and Mean Fields
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Results

Preliminary QL Results for 2D Flow: Evolution of Horizontal KE Spectrum

Energy density

3.0

= Evolution toward narrow banded spectrum
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Nonlinear Effects

Extension of Model: Beyond QL Dynamics

@ As Fr — 0, leading-order fluctuation equations are inviscid/non-dissipative, and
satisfy Taylor—Goldstein (TG) equation in 2D

2 1+ 0.b 2T .
d*)p | | (1+8:b0) 82w 2| d = o

dz? (Go—c)’ (Go—c)

for normal modes ' (x, z, 7) = 1(2)e“X=<) 4+ c.c., where ¢ = w/a and

(u, Wor) = (9:4,—0x%)")

@ Regular unstable modes, but singular neutral modes (with discontinuous first
derivatives) and potentially singular marginal modes

@ Self-organized criticality? DNS of stratified shear layer (Werne & Fritts 1999)
indicates gradient Richardson no. Riz = (1+ 0:bo) /||0-to| |2 — 1/4 for late time

@ These considerations suggest the potential emergence of dynamics on finer z-scale
— in fact, on the Ozmidov scale. ..
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Nonlinear Effects

Extension of Model: Scaling Arguments

@ In nbhd. of z level, where vertical gradients may be large, diffusion important in
fluctuation dynamics when thickness of layer is s.t.

/

2
%3§uu = 0 (Wllazﬂu) = i.e. when 0, = O(eil)

@ Let z = z) + en (recalling ¢ = vV Fr) and introduce “inner” fields/expansions:

c
o O §F

Ui(xi,xi,n,7,t€) ~tor (X, 2o, t)+ eV (xi,x1,m,7,t)+...
WXL, X1, 7, tie) ~ W.y(x1,x1,20,7,t) +Wolx1,X1,m,7T,t)+ ...
P(x1,%x1,n,T,t;€) ~ Po(X1,20,t) +ep1(xL,X1,20,T, ) + ...
B(x1,X1,m,T,t;€) ~ b(x1,z0,t) + €Bi(xL, X1, n,7,t) +...

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 16 / 18



Nonlinear Effects
Extended Model

Corrections to Slope of Mean Fields

1 _ -

=0 = 0, (Wilu'u) 8 Ui = Wy (UL — Ui ls)
1 _ —

ﬁaiBl = 8 (W’ B/) = ﬁa”IBli - WLl (B{ - B{lzo)

Nonlinear Fluctuation Dynamics

_ S 1
{37 + uoL ‘VX} Ui + W0, (Uu -+ U/u) — On <Wi1Ul1J_> = —Vypi+ ﬁaiulu

_ S 1
[aT + oL - vx] Bi + W10, (B1 + B]) — 0, (WLIB;) = WL+ 508

Observation: Fluctuation equations bear certain similarities to reduced PDEs derived by
Balmforth & Young (1997) for dynamics of shear flows with “vorticity defects”.
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Conclusion

Summary

@ Separation of scales, strong anisotropies emergent in extreme parameter regimes
present obstacles for DNS but opportunities for reduced multiscale modeling

@ Certain QL/CE2 reductions may be formally justified via asymptotic analysis,
particularly for flows subjected to strong restraints (strong stratification)

@ Asymptotic analysis also suggests important ways to extend QL/CE2 models:

@ Slow variation of mean fields
@ Sub-regions of flow in which fluctuation nonlinearities may be non-negligible

@ Future directions:

o Implement multiscale numerical scheme to incorporate slow modulation of
pancake structures

o Pursue statistical implementation (e.g. CE2)

@ Incorporate “inner” layer dynamics on (vertical) Ozmidov scale
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