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Introduction

» ExampLE: resolvent modelling of 3D lid-driven cavity

» ExamMPpLE: passivity-based control of turbulent channel

]



NSE as a feedback system:

NSE can be represented diagrammatically

f u
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Functions u, f: Q x [0, T] — R’.




[Aside] Exact solutions

Those that that survive the complete loop unchanged are
self-sustaining solutions.
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(further aside: this principle is often used to prove stability
of closed loop when designing controllers).



APPLICATION [:

2D RESOLVENT MODES IN A LID-DRIVEN
CAVITY

With F Gomez, M Rudman, H Blackburn (Monash);
B McKeon (Caltech)*

* paper in prep.



Lid-driven cavity

v

Re= 1200, A = 0.945D

v

Nonlinear, low-dimensional behaviour

v

Three dominant wavenumbers: 3= 0, 3, 6

v

Three dominant frequencies: w = 0, 0.76, 1.52

v

spectral-hp 2D x Fourier (semtex)



Can we apply SVD directly to NSE?

f ' u
u-Vu

LNSE '

from f to u is linear, so yes, in part.




f u

\: -
LNSE

Fourier transform velocity (translation invariant in time, z;
neglect transients)

u= ) ug(x,y)e P
ﬁ’w
Assume time-space mean u to close.
Same for nonlinear term,

—u-Vu= Z £5,,(x, y) Pz
Bw



Fluctuations:

ug, = (iw—Lg) ! £5,,.

Mean:

1
0= fo —ug- VU() + Evzu().
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Take SVD of transfer function,

(lw — Lg)™~ Zwﬂwm OBw,m ¢,8wm

Gives gain-optimal basis to represent u and f, scalar
coefficient ¢,

u,37 Z ¢6,w m(X, ) CBw,m

f@wx}/ Zﬂsﬁwmx)/)cﬁwm/aﬁywm
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Estimating mode coefficients from probe signal

Focus on 8 = 3, fit m = 1 coefhicients at three frequencies.

Ca = [ (xp) Us(xyp)

LSQ fit with single probe at xg = (0.1, 0.1, 0); reconstruction at xy and x; = (0.82,0.95, 0)
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Reconstructed field (RMS fluctuations)

DNS

model
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About 20% model error



isosutfaces at 30% max wg_3.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



Conclusions (I.a)

Observations:
» Quite similar to quasi-linear/RNL but freq-domain;

4SSUINECS mean

» Solving for mean eqn / coeffs ~ reintroducing
fictitious time

Limitations:

» Needs data to fix amplitudes, phases, dominant w, 3



Conclusions (I.b)

Benefits:

v

Meaning of mean flow in linear operators is now clear

v

Approximates whole flow from probed points + mean

v

Modes are orthogonal (unlike eigenmodes)

v

Step towards resolvent models of turbulence in
complex geometries
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APPLICATION II:

FrepBACK CONTROL
IN A TURBULENT CHANNEL



Control of a Re, = 100 / Recp = 2230 channel

With P Heins, B Jones (Sheffield)*.

v

Approach is feedback control to stabilise perturbations
to fixed point (e.g. laminar)

v

Actuation is v-transpiration at the wall

v

Sensing is shear stresses at the wall

v

Modified J Gibson’s channelflow

*Heins, Sharma, Jones, UKACC, 2014; & in review.



Previous work

» Bewley, Kim, Papadakis, KTH and others
» They all used linear LQR / LQG or H

» Martinelli & al (2011) used comparable approach.

This work follows on from Sharma et al 2006, 2009, 2011.

Morrison’s group continuing another branch of this work.



Input-output view / Supply rate”

4 Inse P

Consider power supply to the perturbations
u=U(x, 1) — Upgy(x)

supplied energy = force x velocity = — (d, u) .

The system G is passive if it is only capable of storing and
dissipating energy and not producing any of its own.

Formally, strictly input passive (SIP) if
(dyu) >e(d,d) — Ty, e > 0, Vd.

Expresses phase relationship between d and u.
SIP systems are stable.

*Willems 1972; Zames 1966
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Supply rate and stability

e bounds net production from above / net dissipation from
below.

Laminar solution unique. — Another (energy neutral) ~ Sustained non-laminar flow
solution possible. possible.

We will use feedback to push up slope of blue line (¢).




Minimise supply rate using actuation

Our game 1s to find feedback acutation to maximise ¢ in
(d,u) > e (d,d)

with stability of laminar guaranteed if ¢ > 0.

d d
_9d INSE ll“ 5 LNSE =




Nonlinear control synthesis problem is actually linear

<f,u> - <(u vu)?“’) =0,

Nonlinearity is conservative,

s0 (d,u) > ¢ 1s maximised when (w,u) is.

Proof is trivial:

(d,u) = (w—fu) =

(w,u) + 0.

-
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The optimisation problem

Propose ¢; find controller s.t. extremal d for (d,u) = ¢ leads
to variational / TPBVP.

This nonlinear variational problem can be solved by linear
algebraic Riccati eqn matrix methods

(Sun & al 1994).

Equivalent to finding optimal feedback to bound
AL+ L)

(c.f RNL).



Open-loop energy production, Re, = 100

Natural production is concentrated on a = 0, 5 < 10
(c.f, RNL)

log0(g) in wavenumber space, open-loop
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Closed-loop energy production, Re, = 100

Actuating only on a = 0, 8 < 10.

e in wavenumber space, closed-loop
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Results for Re, = 100

Actuating only on a = 0, 8 < 10.

Uncontrolled

z
Controlled
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200

constant Uy, 4 X 2 X 2, 182 X 151 X 158



Conclusions (II)

» Linear mechanisms important:

» {non-normality; phase; lift-up}
» {pseudo-resonance; gain; critical-layer}

» Reducing gain by feedback does better but is less
‘elegant’.

» Brute-force nonlinear optimisation is expensive and

can fail when flow is chaotic (APS G15.00005).



Singular value decomposition

M=UZI*

Vi =1rv=I1 UU=UU=I
Om 2 Oy 1

oy are the gains.



Image compression

[U, S, V] = svd( img );

U(C:,1:m) * S(1:m,1:m) » V(:,1:m)";

aprox_img

()



Image compression

(U, S, V]

svd( img );
U(C:,1:m) * S(1:m,1:m) » V(:,1:m)";

aprox_img

2 modes 5 modes 30 modes 3000 modes
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Image compression

[U, S, V] = svd( img );
aprox_img = U(:,1:m) * S(1:m,1:m) = V(:,1:m)’";

2 modes 5 modes 30 modes 3000 modes

-

-

1 modes 2 modes 5 modes 842 modes




APS

D29.00010

Varadevu, Sharma, Ganapathisubramani

Exact laminar solutions for flows in channels
with sinusoidal walls
“invariant solutions in w-domain with roughness”

G15.00005
Otero, Sharma, Sandberg

Limitations of Adjoint-Based Optimization
tor Separated Flows
“Fully compressible adjoint solver”
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