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Observation and simulation of wall-turbulence has
greatly advanced while understanding of the
mechanisms underlying turbulence remains incomplete.

Linear theory provides insight into the dynamics of
turbulence not available from direct inspection of
observations and simulations of the turbulent state.

While turbulence is not sustained in linear theory, the
simplest extension of linear theory, quasi-linear theory,
sustains realistic turbulence and, moreover, can be
completely characterized.

While QL SSD models can’t replace DNS for the
purpose of simulation, QL/SSD theory provides a
comprehensive understanding of the physical
mechanism underlying wall-turbulence.



Wall-turbulence in devices and atmospheres is fundamentally linear
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Turbulence Theory (linear energetics)
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Turbulence Theory (nonlinear feedback)
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This nonlinear feedback process instigates a runaway increase
in turbulence intensity.



Turbulence Theory (the governor)

This divergence must be limited by some mechanism in order to
maintain a statistically steady turbulent equilibrium.
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Turbulence Theory (synthesis)

Divergence is intercepted by a nonlinear perturbation-mediated mean
flow modification that acts as a feedback control enforcing the
statistically steady observed turbulent equilibrium.

This control has analytical expression only in SSD
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Navier-Stokes Equations in mean/perturbation form

ﬁtot — U—I—u — (U,V,W) -+ (u,v,w)
20 : channel height

U: Streamwise mean velocity i - wall velocities
+U,, :

u: Perturbation velocity

R — U.,,0
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(9tU—|—U-VU—|—VP—%{AU:—<u-Vu>
u+U-Vu+u-VU+Vp— 2Au=—(u-Vu— <u-Vu >)

V-U=0, V-u=0




Restricted Nonlinear (RNL) Equations

RNL is a SSD model closed at second order

RNL retains the full streamwise mean dynamics (first cumulant) and
obtains the perturbation Reynolds stress from the perturbation
covariance (second cumulant)

The perturbation covariance is approximated with a finite or infinite
ensemble of perturbation equations sharing the same mean flow

(RNL_if an infinite ensemble is employed)



Restricted Nonlinear (RNL) Equations

Mean equation:

Ut+U-VU+VP—%AU:—<u-Vu>EL(C)

When using an infinite ensemble of perturbations the covariance
solves the time dependent Lyapunov equation:

C, =A(U)C+CA'(U)+Q



U+ U-VU+ VP - +AU =L(C)

C:=A(U)C+CAU) +Q

The RNL system is an SSD for the co-evolution of the state
variables (U(t), C(t)).

RNL system is deterministic, autonomous and nonlinear.

Trajectories of (U(t), C(t)) may converge to a fixed point, a limit
cycle or a chaotic attractor.

Bifurcations can be explored by linear perturbation analysis of
the fixed points in this system.

Chaos in RNL corresponds to chaos not of a realization of
turbulence but rather to chaos of a statistical state trajectory.



Ui+U- VU + VP — %AU:L(C)
C; =A(U)C+ CAU))T +Q
Surprisingly, it turns out that Q (the stochastic parameterization for

perturbation-perturbation nonlinearity) can be set to zero in this
closure and the turbulence nonetheless self-sustains.



RNL supports turbulence similar to DNS
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Simulations based on ‘channelflow’ code

shown is kx=0 component Lx= 411, R=1000
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* Whereas DNS turbulence is complex and not well understood in
contrast RNL turbulence is completely characterized.

* RNL turbulence is simple (rankl) while DNS turbulence is of high
rank.

* This reduction in complexity is spontaneous and understood.

* The spontaneous reduction in complexity of the turbulence is
accompanied by a natural reduction in the number of streamwise
modes supporting the turbulence.



Consider RNL_
U +U-VU+ VP - AU =L(C)
C; =A(U)C+C(AU))"+Q

* By itself the second of these equations constitutes a stochastic
turbulence model (STM) for the perturbations.

* We can exploit this STM to understand a fundamental mechanism of
wall-turbulence dynamics.



Consider perturbing a stochastically maintained turbulence in Couette flow with
a small streak and solving the STM for the forcing of the roll (V,W) that results.
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Reynolds stresses are organized by the imposed streak to produce lift up
configured to amplify the imposed streak.



e Can linearize the RNL system about the Couette flow
equilibrium and find the unstable eigenfunctions which are
roll/streak structures that grow exponentially in free stream
turbulence. These are intrinsically SSD instabilities.

e However, the interesting result for our purposes is not these
eigenfunctions but rather the implied existence of a universal
fast mechanism supporting the roll/streak structure.



Forcing of the streak by its organization of perturbation Reynolds stresses occurs
on the advective time scale and underlies maintenance of the roll/streak structure
in turbulent flows.
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e |t remains to understand the mechanism maintaining the
perturbation variance as well as how the system is regulated
to maintain a stable statistical equilibrium state

e the first results from parametric instability of the time-
dependent streak

¢ the second results from rapid optimal perturbation growth on
highly inflected streaks



Review of Parametric Instability

The undamped harmonic oscillator in energy coordinates with restoring force
perturbation w’ has dynamics:

()= (o ) ()=20)

Just as in the NS equations for turbulent flow the instantaneous growth rates
and directions are eigenvalues and eigenvectors of the linearized dynamics %

which in this case are :I:%/ and (—1,1);(1,1) respectively.

As the solution vector rotates it grows when aligned along (-1,1) and decays
when aligned along (1,1) averaging to zero net growth.

If the restoring force perturbation is applied as the solution vector passes (-1,
1) and removed as it passes (1, 1) the solution vector does not lose passing (1,1)
its gain on passing (-1,1) and will be exponentially destabilized by this time
dependent restoring force despite being stable at each instant.

Conceptually this is the mechanism maintaining turbulence (and the reason
turbulence is necessarily time-dependent).



This is the familiar mechanism of the Mathieu
equation by which the time dependent harmonic
oscillator is destabilized.

This mechanism requires resonant forcing and it is
not the mechanism producing parametric growth in
turbulent boundary layers.

The parametric growth mechanism in wall-turbulence
is that of Oseledets (1968): it is the stochastic
parametric mechanism that produces the unstable
Lyapunov spectrum in random matrix dynamics.

This mechanism depends on the convexity of the
exponential propagator and can be understood by
considering the stretching of a material line in a
turbulent nondivergent fluid.



- The compelling similarity of RNL and NS turbulence and the great
simplicity of RNL dynamics motivates closer study of the
mechanisms underlying RNL turbulence.

* The method we adopt is to synchronize two RNL systems so that
the perturbation dynamics can be studied in isolation.



Consider an RNL turbulence self-sustaining without
stochastic forcing (Q=0):

0 Ua 4 U, - VU, + VP, — AU, = L(C,)

(3’tCa — A(Ua)ca an (ja(‘A(IJa))]L

Now impose the streak alone from this turbulence on
the perturbations dynamics of a second RNL system
initialized with a random full rank covariance:

0;Cb = A(U,)Cp + Cp(A(U,))!



 Examination of the perturbation dynamics reveals a linear
essentially stochastic time-dependent system so the asymptotic
structure of the perturbation field is the first Lyapunov vector.

* Given that the Lyapunov vector is a component of the state
trajectory the associated Lyapunov exponent is necessarily
Zero.



Synchronized system perturbation field converges to the first
Lyapunov vector of the primary system.
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Synchronized system perturbation field converges to the first
Lyapunov vector of the primary system which supports only
a single streamwise mode greatly reducing the complexity.

RNLa lul , norm = 0.24978 RNLb lul , norm = 0.24978
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The channel has length Lx = 1.75, width Lz = 1.2 and R = 600; the single
streamwise wavenumber k=2 pi/Lx is retained by the dynamics.



Stochastic forcing of the synchronized dynamics reveals the
existence of both the trajectory Lyapunov vector (active subspace)
as well as the other Lyapunov vectors with negative exponents
(passive subspace).
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* We wish to examine the mechanism by which LV1 is
maintained and regulated.

* Method is to diagnose the synchronized system dynamics.



¢ |nstantaneous growth rate possible for a perturbation (t=[0,5000]).
e Note instability boundary.
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Instantaneous growth rate achieved by Lyapunov state
vectors (t=[0,5000]).
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Partition of the instantaneous growth rate of the LV1 into
modal and non-modal sources.

0.2 T .

o
(AW
T

growth rate -

i
N

dlog E /dt

O
Qo

equivalent normal growth rate |
0 500 1000 1500

t

-1.2




Spectra of the instantaneous growth rate of the perturbation state
vector (LV1) and the mean streak reveal identical red noise processes.
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Turn now to the question of how the system is regulated to
maintain a statistical steady turbulent state.



¢ |nstantaneous growth rate possible for a perturbation (t=[5000]).
e Note instability boundary.
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Auto and cross-correlation of streak amplitude and Reynolds stress
damping reveals a time scale far shorter than that of the instability
-> regulation of the streak occurs on the advective time scale.
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The statistical state is regulated by a rapid perturbation Reynolds stress
mediated feedback associated with streak inflection which is in balance
with roll-induced lift-up. The mechanism of this regulation is adjoint mode
growth which occurs on the advective time scale.
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Conclusions

SSD provides a powerful tool for studying the dynamics
of turbulence.

RNL model is a second order SSD model that maintains
highly realistic turbulence.

The dynamics of the RNL system are directly connected
to NS dynamics.

The RNL dynamics are naturally minimal.

The RNL dynamics are completely characterized
analytically.

RNL turbulence is maintained by the stochastic
parametric growth mechanism which is a universal
property of time-dependent dynamical systems.

RNL turbulence is regulated by adjoint mode growth on
the advective time scale.



