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What do we want from a model? Southampton

Navier-Stokes equations

J

some ideal model

— T~

scalings, symmetries structure

statistical moments

T

drag energy spectra



Coherent Structure < Important dynamics
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Low-order model «—————— Efficient basis
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What to throw away?

v

» In time, trajectories approach some turbulent attractor
that defines dynamics

» this should be the statistically steady state

» we wish to gain insight about long-time behaviour



u(r;x,0,t) = Z u(r; k, n, w)elleton=—uwt

b | Y
i k,n,w Rl
‘ mean: McKeon & Morrison 2004 ‘ :




NSE in Fourier domain Southampton

Fourier modes for velocity in all three homogeneous directions

I’ X, 9 t Zu kx+0n —wt)

k,n,w

u(r) :=u(rk,n,w)
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NSE in Fourier domain

Fourier modes for velocity in all three homogeneous directions

I’ X, 0 t Zu kx+9n —wt)

k,n,w

uk(r) :LAI(I’, ka n, w)

subtract out steady-state / up / mean / (k,n,w) = (0,0,0)
and substitute for nonlinear term

f(r;x,0,t) == —(u—up(r)) - V (u—up(r))

I’ X, 9 t Zf I<x+9n wt)

k,n,w
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Steady-state equation
The equation for (k,n,w) = (0,0,0) gives the mean
Re stress gradients supporting mean

0= |fo(r)| —uo(r) - Vug(r) + Re™" V2| ug(r)

time-space ave velocity

Clear interpretation for linear operators formed about the
mean profile — this is not small perturbation analysis around a
fixed point



Equation for fluctuations at (k, n,w) Southampton



Equation for fluctuations at (k, n,w) Southampton

interaction between scales

linear resolvent

The resolvent Hy = (iw — Ly) ™" is the frequency-domain (so
travelling waves) transfer function from nonlinear interaction
between scales to velocity field

Uy requires ug requires uy... close by assuming ug



NSE as a network of resolvents Southampton

Ju~Vu
]

fs u

[FT(k’”vW)ifo—(r){Mean equatiorjuk—°m>
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fielr) [ uk(r) Southampton
““u""  Resolvent P

ik(up — c) —Re™'D —2inr~2Re”! 0 N
Hy = 2inr—2Re™! ik(ug — c) —Re™'D 0
— dug 0 ik(up —c) —Re™' (D +r2)

D=09%+r"0,—r2(n*+ 1) — k2, states (uy, ug, Uy)

Meseguer & Trefethen JCP 2003

McKeon & Sharma JEM 2010
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fie(r) uy(r) .
Non-normal ity Southampton

ik(up — c) —Re™'D —2inr~2Re”! 0 -
Hy = 2inr—2Re™! ik(ug — c) —Re™'D 0
— dug 0 ik(up —c) —Re™' (D +r2)

» Mean shear term is main source of non-normality
» Only net source of fluctuation energy

» Translational symmetries < normal operator

McKeon & Sharma JEM 2010
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fie(r) u(r) -
== Critical layer response Southampton

ik(up —c) —Re™'D —2inr~2Re”! 0
Hy = 2inr~2Re™" ik(up — c) —Re™'D 0
— dug 0 ik(up —c) —Re™' (D +r72)

v

as ¢ = w/k — up and Re — o0, |IHk|| — o0

v

Energetic response at critical layer becomes very
important at high Re.

v

decouples from shear mechanism

v

response becomes more localised around critical layer

McKeon & Sharma JEM 2010
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fil(r uic(r) . . .
"™ Approximating a single resolvent >!(4mPON

SVD approximates an operator by directions of principal gain

*

Om = (Pk(r); Prae(r)), 0

— (- Osk)**f“USkLSkw*
IR I

S1m = (ac(r), rae (1)), I Z;ﬂ Ch

O'mZO'm—i—IZO — o

Hie= > Uric(Nomicio(r)

m=1

N

Each oy, is a (real) gain,
o) is the maximum gain.

>
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mr).uk(r) Approximation of Hy. (by gain) Southampton

» This gives radial form (or structure) of velocity field at k
— natural radial basis

» Reduces NSE solution to a weighted sum of response
modes

X 9 rt ZXlkwlk !(kx+n9 wt)
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Ways to proceed

1. assume unit forcing for all k — spectra
2. analysis of resolvent for symmetries — scaling
3. manually pick combinations of — structure
4. solve x; = >, 0NisbXaXb — nonlinear solutions

13 /22



Response mode location, (k,n) = (I, 10)

1 1r
09- @ (iii) Critical mode — 09
08- 08
(ii) Attached critical mocie
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McKeon & Sharma JFM 2010
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Spectra: direct from resolvent gains

E,, for unit white noise forcing on first two modes only at

y™ =15 vs DNS

’ 1
, 08
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0

N

(in a channel) Moarref & al JFM 2013
DN (lines): Hoyas & Jimenez PoF 2006
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Scaling: symmetries in the resolvent Southampton

> U, T T T T T ] M,outer—in—y S
S " \a/Rery. 5
cl — U]

Q » gl outer-in-z S
E 16 >\a:7 V yy+7 V )\z>\j or
. inner '
< Ayt AT Si
=

=

LOG | OUTER
yT =100 y=0.1

» mean profile scaling regions induce symmetries in
resolvent

» reveals scalings of response modes

Moarref & al JFM 2013
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Scaling: geometric self-similarity Southampton

Under assumptions:

1. modes local in y

2. critical layer term scales
geometrically U(y) — ¢ = g(y/y.)

3. ik (U(y) — c) term balances with
Re'A term

log region is necessary to obtain
invariant resolvent.

Ux A TR A s P (A 72 TE e
uy = yeHa ye yeFaa v yeHa3 fy
yeH v v vt yeFiss fz

Moarref & al JEM 2013

Similar arguments derive classical inner and outer Re scalings
for resolvent modes
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Scaling of u, \, streamwise energy spectr

inner self-similar (analytical) outer

ut =16 "UcL —6 UaL
Euw(ys kx) = /O Euu(y; kx, ©)de| + -/U+ 6 Euu(y; kx, ©)dc| + /U . Euu (y; kx, €)dc
= =

2
Euu/ReZ

10° 10’ 10

-
N 10"
+, w0’ near-wall cycle w10 &
< < ~
x 10
o ' ~<
10°
i 10’ 3
10 10
10" 10" | 10"
10" 10' 10" 10° 10' 10" 10"
+
y wt y

Rer = 3333, 10000, 30000

aSouthampton
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Scaling of u, A\, streamwise energy spectra

inner self-similar (analytical) outer

ut=i6 UgL—6 UL
Euu(y; ko) = / Eus (3 kx> )dc| + /+ Ena(y; ky, )dlc| + / Euu (1 ke, €)de
JO JUT =16 'UCL76

2
Euu/Re’

Re, = 3333

2
10" 0.12
0.1

F10.08
1 10.06
0.04

0.02

10"




Scaling of u, A\, streamwise energy spectra

inner self-similar (analytical) outer

U —6

ut=l6
Euw(ys kx) = /O Euu(y; kx, ©)dc| + /

Ua
Euu(y; ke, ©)dec| + Euu(y; k, c)dc
ut=le JUc —6

2
Euu/Re’

Re, = 10000

10

10°
0.08
£10.06
10" 0.04

) 0.02
10
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Scaling of u, A\, streamwise energy spectra

inner self-similar (analytical) outer

U —6

ut=l6
Euw(ys kx) = /O Euu(y; kx, ©)dc| + /

Ua
Euu(y; ke, €)de| + Euu(y; k, c)dc
ut=l16 JUc —6

2
Euu/Re’

Re, = 30000

0.08

10.06

0.04

0.02
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Turbulence as sheets of coefficients
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Turbulence as sheets of coefficients Southampton
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Hairpin packet analogy to near-wall cycle Southampton

resolvent

» Recently found ‘edge
states’ look like hairpin
packets

FIG. 2. (Color online) Snapshots of the streanmwise component of the pertur-
bation (darker surfaces, blue online, for u%A0:13) and of the Q-criterion
(lighter surfaces, green online) at t %4300 and t 4700 (top and bottom, [ H

respectively) obtzined by the DN initialized with the nonlinear optirral per- > Trladlcally com patlble

turbation with Eq % 0:004444275.

Cherubini & al PoF 2011

mode combinations can
self-sustain via
nonlinearity
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Conclusions Southampton

» localisation of modes around critical layer associated with
Taylor's hypothesis

» symmetries in resolvent induced by assumed mean results
in scaling behaviour of resolvent modes and spectra

» attached-critical behaviour associated with impingement
of S-branch on imag axis

» non-orthogonality of ¢, to fi fixes coefficients; permits
self-sustaining mode combinations

N
N
)
N



Extra stuff



The singular value decomposition Southampton

SVD gives L, gain-optimal low-dimensional approximation of
an operator.

o1,
. —01a
_| 05 _

—0.5

A= 0.3761 0.9266 s— 2.2089 0 B— —0.1246  0.9922
| 09266 —0.376l - 0 0.6564 - 0.9922 0.1246

Optimal rank-1 approximation:

- [ 22089 0 7.«
M_A[ 0 O]B
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Exciting a large-scale motion P
Winlii X/6=3 /68 /624
k=141 | 0 = ~ X/6=
X/GDZ}S x/én:35'38
5 PIV PIV
5
y 5, A
— v
onwie. H———1 %
x/6= 0.1 1.1 23 34 5.0 85,12.3,16.8,24.1
Jacobi & McKeon JFM 2011
McKeon & al PoF 2013



Exciting a large-scale motion

u \Y

= o
0.4
02

0 w2 n ani2 2n

1 1

1 1
0.8 08|
2 0§ < o
04|
02|

0 2 n ani2 2n 0 w2 n 3ni2 2n

369 downstream, predicted and measured

McKeon & al PoF 2013
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Localisation of response at critical layer >0t/mpon

0
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log(Re2E(y, ¢)); normalised; Re, = 2003

Moarrefer al JFM 2013



The nonlinear term Southampton

f, = —u, - Vu,

The full quadratic spectral transfer function for
Uu=u,+ uy,+u.+...can be built up from this as the sum

f.aa + fab + fac
+fo o i

= 2 D 6=, e the

i={a,b,c,...} j={a,b,,...}

6/9
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Mode interactions (in x, 0, t) Southampton

Wave combinations provide forcing at the sum of wavenumbers

u, +u, — oy

|k n c=uwlk
I, 6 6 273
k|6 -6 2/3

k,|+| 0 0 w=20

Any real mode interacts with
the mean



Mode interactions (in x, 6, t)
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Wave combinations provide forcing at the sum of wavenumbers

ug, +up, — fopp

|k n c=uwlk
K, 6 6 2/3
K |6 -6 2/3

k_|+| 0 0 w=20

Any real mode interacts with
the mean

‘ k n C
k, 6 6 2/3
k, 1 6 2/3
k|7 12 2/3

The idealised hairpin packet
can self-interact
Just requires that (f;, ¢,), # 0



UNIVERSITY OF

Mode interaction (in r) Southampton

In wall-normal direction, forcing mode ¢y (r) is not typically
orthogonal to fi(r)
Modes at triadically consistent k can self-support with large
enough amplitude.

Sharma & McKeon AIAA 2013



Mode interaction (wall-normal cascade) Southampton

In wall-normal direction, (¢(r), ¢m(r)), # Om..

Production due to a mode combination is (in matrix form)

dE * *
—— = u) = QU A D Xl (D o) T

dt
» dominated by leading mode (factor of o))
» response and forcing modes not orthogonal =

» transfer of momentum across r and between modes
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