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• Introduction to Quasi-Linearization

• Reynolds decomposition

• Triadic interactions

• Numerical Experiments with an Unstable Point Jet

• Direct Statistical Simulation (DSS)

• Cumulant Expansions

• Numerical Experiments with a Stochastic Jet

• Large Deviation Theory

• Generalized Quasi-Linear Approximation (GQL)

• Wall-Bounded Rotating Couette Flow



Quasi-Linearization

q̇ = L[q] +Q[q,q]

q = q+ q0

q̇ = L[q] +Q[q, q]

q0 = 0 q = q

= L[q] +Q[q, q] +Q[q0, q0]

q̇0 = L[q0] +Q[q, q0] +Q[q0, q] +Q[q0, q0]�Q[q0, q0]

Drop eddy + eddy —> eddy scattering
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Systems with Zonal Symmetry: Zonal Averaging

q(✓,�) = q(✓) + q0(✓,�)

QL is a conservative approximation obtained by triad decimation



• Quasi-2D:  Energy flows upscale

• Heterogeneous shear softens nonlinearities

• Time-scale separation between mean flow 
and eddies

Why Might This Work?

Herring (1963); O’Gorman and Schneider (2007)



Numerical Experiment: 
Unstable Barotropic Point Jet

@q
@t + ~v · ~rq = qjet�q

⌧

q = ! + f f(✓) = 2⌦ cos ✓

~v · ~r! = J [ , !] J [a, b] ⌘ r̂ · (~ra⇥ ~rb)

! = r̂ · ~r⇥ ~v = r2 
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"More than any other theoretical procedure, 
numerical integration is also subject to the criticism 
that it yields little insight into the problem.  The 
computed numbers are not only processed like data 
but they look like data, and a study of them may be 
no more enlightening than a study of real 
meteorological observations.  An alternative 
procedure which does not suffer this disadvantage 
consists of deriving a new system of equations 
whose unknowns are the statistics themselves...."

Edward Lorenz, The Nature and Theory of the General Circulation of the 
Atmosphere (1967)

“Direct Statistical Simulation” (DSS)



Low-order statistics are smoother in 
space than the instantaneous flow.  

Statistics evolve slowly in time, or not at 
all, and hence may be described by a 
fixed point, or at least a slow manifold.

Direct Statistical Simulation (DSS)
vs. 

Direct Numerical Simulation (DNS)

Correlations are non-local and highly 
anisotropic and inhomogeneous.  
Statistical formulations should respect this.



DSS by Expansion in Equal-Time Cumulants
q̇ = L[q] +Q[q,q] q = q+ q0

q̇ = L[q] +Q[q, q] = L[q] +Q[q, q] +Q[q0, q0]

Q[q0(~r), q0(~r)] =

Z
d~r0Q[�(~r � ~r0), c2(~r0,~r)]

q0(~r1)q0(~r2) = c2(~r1,~r2) = c2(✓1, ✓2,�1 � �2)

q(~r) = c1(✓)

q0(~r) =

Z
d~r0�(~r � ~r0)q0(~r0)



"....This procedure can be very effective for problems 
where the original equations are linear, but, in the 
case of non-linear equations, the new system will 
inevitably contain more unknowns than equations, 
and can therefore not be solved, unless additional 
postulates are introduced."

Edward Lorenz, The Nature and Theory of the General Circulation of the 
Atmosphere (1967)



DSS by Expansion in Equal-Time Cumulants

q0(~r1)q0(~r2) = c2(~r1,~r2)

q̇0 = L[q0] +Q[q, q0] +Q[q0, q]

ċ2(~r1, ~r2) = 2
�
L1[c2(~r1, ~r2)] +Q1[c1(~r1), c2(~r1, ~r2)] +Q1[c2(~r1, ~r2), c1(~r1)]

 

(a self-consistent Lyapunov equation)

A realizable closure: QL decouples 2nd cumulant from 3rd

q0(~r1)q0(~r2)q0(~r3) = c3(~r1,~r2,~r3)
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(Short) Time Average for Stochastic PDE

h⌘(~r1, t1) ⌘(~r2, t2)i = �(~r1, ~r2) �(t1 � t2)

ċ2(~r1, ~r2) = . . .+ �(~r1, ~r2)

q̇ = L[q] +Q[q, q] + ⌘



S3T / CE2

m

m

0 m �m

0 X

Farrell & Ioannou (2007); JBM, Conover, & Schneider (2008); Bakas & Ioannou 
(2011); Srinivasan & Young (2012);  Parker & Krommes (2013).

JBM, W. Qi, and S. M. Tobias, “Direct Statistical Simulation of a Jet”  arXiv:1412.0381
(CE2, CE2.5 and CE3).



Numerical Experiment: 
Stochastically-Driven Jet

@t⇣ + ~v · ~r(⇣ + f) = �⇣ � ⌫2r4⇣ + ⌘
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The “Curse of Dimensionality” 
— How to Address?

Schmidt decomposition

Entanglement: 
More than one non-zero eigenvalue

q0(~r1)q0(~r2) =
X

i

�i 'i(~r1) 'i(~r2); �i � 0

⇡
X

�i>�c

�i 'i(~r1)'i(~r2)



1 mode 5 modes

10 modes 30 modes

All 441 modes
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Large Deviation Theory
(with Tomás Tangerife and Freddy Bouchet)

where the Fourier transform of the linear operator (8) reads

L
U,m

[!
m

] (�) = � im

cos�
(U(�)!

m

(�) + �(�) 
m

(�))� ↵!
m

(�)� ⌫
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(��
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)n !
m

(�).

(48)
In (47), ⌘

m

(�, t) is a gaussian white noise such that ⌘�m

= ⌘⇤
m

, with zero mean and
with correlations

E [⌘
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)] = 0,

where c
m

is the m-th coe�cient in the Fourier decomposition of C in the zonal
direction.

Using the Fourier decomposition, the zonally averaged advection term can be
written R(�) =

P

m

R
m

(�) with R
m

(�) = � im

cos�

@
�

( 
m

· !�m

). Using this expression
and the fact that !

m1 and !
⇤
m2

are statistically independent for m
1

6= m
2

, the scaled
cumulant generating function (45) can be decomposed as8

H[✓] ⌘ lim
�t!1

1

�t
lnE

U



exp

✓

✓ ·
Z

�t

0

(R(u)� !
z

) du

◆�

= �✓ · !
z

+
X

m

H
m

[✓] ,
(49)

with

H
m

[✓] = lim
�t!1

1

�t
logE

U

exp



Z

d� cos� ✓ (�)

Z

�t

0

R
m

(�, u) du

�

. (50)

We recall that E
U

is the average in the statistically stationary state of (47).
In the following, we will consider the case where only one Fourier mode m is

forced, for simplicity. If several modes are forced, their contibutions to the scaled
cumulant generating function add up, according to (49).

Finally, consider the decomposition of the zonally averaged advection term into
spherical harmonics (2), R

m

(�) =
P

`

R
m,`

Y 0

`

(�). Using ✓(�) = ✓
`

Y 0

`

(�) in (50), we
investigate the statistics of the `-th coe�cient R

m,`

. The associated scaled cumulant
generating function (50) is denoted H

m,`

(✓) ⌘ H
m

[✓Y 0

`

(�)], and the large deviation
rate function is denoted

L
m,`

(!̇
`

) = sup
✓`

{✓
`

!̇
`

�H
m,`

(✓
`

)} . (51)

6.3 Numerical results

The function H
m,`

defined in previous section can be computed either from a time
series of !

m

(�, u) using the method described in section 4.4, or solving the Ricatti
equation as described in section 4.3.1. Then, the large deviation rate funtion is
computed using (51). We now show the results of these computations and discuss
the physical consequences.

8The time t in the upper and lower bounds of the integral in (49) are not relevant here, as we
are considering the statistically stationary state of (47).

29

function is given by [4]

H (x, ✓) = ✓ · g(x) + tr (CN1 (x, ✓)) (30)

where C is the covariance matrix of the noise ⌘ in (26) and N1 (x, ✓) is a symetric
matrix, stationary solution of

dN

dt
+NL

x

+ LT

x

N = 2NCN + ✓M, (31)

whenever such a stationary solution exists. Equation (31) is a particular case of a
matricial Ricatti equation, in the following we refer to (31) as the Ricatti equation.

The Ricatti equation (31) is close to the Lyapunov equation (28), and it can be
solved using similar methods4. Moreover, the numerical implementation of (30, 31)
can be easily checked using the relation with the Lyapunov equation (28). Namely,
(25) implies that

dH

d✓

�

�

�

�

✓=0

= M ·G1(x) + g(x).

The first term in the right-hand side is computed from the Lyapunov equation
(28), while the left-hand side is computed from the Ricatti equation (31) together
with (30).

In section 6, we will present a numerical resolution of (31) for the case of the
quasi-linear barotropic equation on the sphere, and then compute directly the scaled
cumulant generating function using (30). We will see that (31) can be very easily
solved for a given value of ✓. This means that the result (30) allows to study arbitrar-
ily rare events in zonal jet dynamics extremely easily, through the Large Deviation
Principle (23). Such result is in clear contrast with approaches through direct nu-
merical simulations, which require that the total time of integration increases as the
probability of the event of interest decreases. This limitation of direct numerical
simulations in the study of rare events statistics will be made more precise in next
section, where we propose a method to compute H(x, ✓) from its definition (24),
using a numerical simulation of the virtual fast process (16).

4.4 Estimation of the large deviation function from time
series analysis

In this section we present a way to compute the scaled cumulant generating function
(24) from a time series of the virtual fast process (16), for instance obtained from a
direct numerical simulation.

Consider a time series {ỹ(u)}
0uT

of the virtual fast process (16), with a given
total time window u 2 [0, T ]. Because the quantities of interest like H(x, ✓) involve
expectations in the stationary state of the virtual fast process, we assume that the
time series {ỹ(u)}

0uT

corresponds to this stationary state. We use the continuous
time series notation for simplicity, the generalization of the following formulas to
the case of discrete time series is straightforward. We also denote for simplicity
R(u) ⌘ f (x, ỹ(u)).

The basic idea to estimate the scaled cumulant generating function (24) is
to divide the full time series {ỹ(u)}

0uT

into blocks of length �t, to compute

4Note that the ordering of products with L
x

and LT

x

di↵ers between (28) and (31).
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“Ricatti Equation”
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We denote by P
�t

⇥

�!z
�t

⇤

the probability distribution function of �!z
�t

, with a
fixed t (and thus a fixed !

z

(t)), but with an increasing �t. Considering this regime
is consistent with the limit of time scale separation ↵ ! 0, where !

z

is nearly
frozen while �! keeps evolving. From (43), P

�t

⇥

�!z
�t

⇤

is also the probability density

function of the time-averaged advection term 1

�t

R

t+�t

t

R(u) du. The Large Deviation
Principle gives the asymptotic expression of P

�t

⇥

�!z
�t

⇤

in the regime�t � ⌧ , namely

lnP
�t



�!
z

�t

�

⇠
�t!1

��tL


�!
z

�t

�

. (44)

The function L is called the large deviation rate function. It characterizes the whole
distribution of �!z

�t

in the regime �t � ⌧ , including the most probable value and
the typical fluctuations.

Our goal in the following is to compute numerically L
⇥

�!z
�t

⇤

. This can be done
through the scaled cumulant generating function (24). Using (43), the definition
(24) can be reformulated as

H[✓] = lim
�t!1

1

�t
ln

Z

d!̇
z

P
�t

[!̇
z

] exp (✓ ·�t !̇
z

) (45)

Because !
z

is a field, here ✓ is also a field depending on the latitude �, and H is a
functional. For simplicity, we stop denoting the dependency in !

z

in H. In (45), we
also have used the notation ✓

1

· ✓
2

⌘
R

d� cos� ✓
1

(�)✓
2

(�) for the canonical scalar
product on the basis of spherical harmonics.

Using (44) in (45) and using a saddle-point approximation to evaluate the integral
in the limit �t ! 1, we get H[✓] = sup

!̇z
{✓ · !̇

z

� L [!̇
z

]}, i.e. H is the Legendre-
Fenschel transform of L. Assuming that H is everywhere di↵erentiable, we can
invert this relation as

L


�!
z

�t

�

= sup
✓

⇢

✓ · �!
z

�t
�H[✓]

�

. (46)

This is the so-called Gärtner-Ellis theorem [7].
The scaled cumulant generating function H[✓] can be computed either from a

time series of �! (see section 4.4) or solving the Ricatti equation (see section 4.3.1).
Then the large deviation rate function L can be computed using (46), and this
gives the whole probability distribution of �!z

�t

(or equivalently of the time-averaged
Reynolds’ stresses) through the Large Deviation Principle (44).

In the following, we implement this program and discuss the physical conse-
quences for zonal jet statistics. We first give a simpler expression of H[✓], that
makes its numerical computation easier.

6.2 Decomposition of the scaled cumulant generating func-
tion

Using the Fourier decomposition (3), we can decompose the perturbation vorticity
as �!(�,�) =

P

m

!
m

(�)eim�, where !
m

satisfies

@!
m

@u
= �L

U,m

[!
m

] +
p
2⌘

m

, (47)
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Applications of DSS

• Macro turbulence

• Boundary Layers driven by convection / shear

• Sub-grid Scale (SGS) Modeling

• Taylor-Couette / Rotating Couette

• Pipe Flow

• Astrophysics & MHD

• Double-diffusive convection?
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⇤

⇤ ⇤
(c)

m1 +m2

m1 m2  ⇤ m1 �m2

|m1 �m2|  ⇤

(a) (b)

Generalized Quasi—Linear (GQL) Approx.

(d) (e) (f)



Vorticity Power Spectra
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⇤ = 3
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Rotating Planar Couette Flow
Bech & Andersson (1996)
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Simulations by Steve Tobias



Roll cell instability for rotation antiparallel to mean flow vorticity















Generalized 2nd Order Cumulant Expansion
(GCE2)

@

@t
q = L[q] +Q[q, q]

@

@t
h = Q[`, h]

@

@t
(h h) = 2Q[`, (h] h)

q = `+ h

@

@t
` = Q[`, `] +Q[(h, h)]

Closure
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