A systems approach to fluid dynamics: input-output models

UNH/IAM Workshop November 2015

Simon Illingworth University of Melbourne

overview

terminology

• frequency domain

• time domain: we will sometimes need the state-space description:

$$\dot{x}(t) = A x(t) + B u(t)$$
$$y(t) = C x(t) + D u(t)$$

$$\begin{split} m\ddot{q}(t) + c\dot{q}(t) + kq(t) &= f(t) \\ P(s) &= \frac{Q(s)}{F(s)} = \frac{1}{ms^2 + cs + k} & \qquad \mathcal{L} \\ P(j\omega) &= \frac{1}{(k - m\omega^2) + jc\,\omega} & \qquad s = j\omega \end{split}$$

$$P(j\omega) = \frac{1}{(k - m\omega^2) + jc\omega}$$

the $\infty\text{-norm}\colon$ SISO case

$$||P||_{\infty} = \max_{\omega} P(j\omega)$$

the $\infty\text{-norm}\colon$ SISO case

frequency response: MIMO case

 $Q(j\omega) = P(j\omega)F(j\omega)$

frequency response: MIMO case

$$Q(j\omega) = P(j\omega)F(j\omega)$$

$$P(j\omega) = \begin{bmatrix} P_{11}(j\omega) & P_{12}(j\omega) & P_{13}(j\omega) \\ P_{21}(j\omega) & P_{22}(j\omega) & P_{23}(j\omega) \\ P_{31}(j\omega) & P_{32}(j\omega) & P_{33}(j\omega) \end{bmatrix}$$

$$P(j\omega) = U\Sigma V^*$$

$$P(j\omega) = \begin{bmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} \begin{bmatrix} -v_1 & - \\ -v_2 & - \\ -v_3 & - \end{bmatrix}$$

$$P(j\omega) = \sigma_1 u_1 v_1^* + \sigma_2 u_2 v_2^* + \sigma_3 u_3 v_3^*$$

• <u>interpretation</u>: σ_i : gains of the plant

columns of V: input directions of the plant

columns of U: output directions of the plant

(columns of U and V are orthogonal and of unit length)

frequency response: MIMO case

the $\infty\text{-norm}\colon$ MIMO case

SISO:
$$||P||_{\infty} = \max_{\omega} P(j\omega)$$

MIMO:
$$||P||_{\infty} = \max_{\omega} \sigma_1(P(j\omega))$$

$\underline{\infty}$ -norm: 'worst case' over all frequencies and all directions

compare with

<u>2-norm</u>: average over all frequencies and directions

∞ -norm: 'worst case' over all frequencies and all directions

the $\infty\text{-norm}$ and model reduction

• suppose we have a plant of order n

 P_n

• and we want to approximate it by a reduced-order plant of order r<n

P_r

• a good measure of the 'distance' between them is

$$||P_n - P_r||_{\infty}$$

balanced truncation

$$\dot{x}(t) = A x(t) + B u(t)$$
$$y(t) = C x(t) + D u(t)$$

• suppose we decompose the state into two parts, $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$

$$\begin{bmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + Du(t)$$

• we will keep x_1 and throw away x_2 , leaving us with

$$\dot{x_1}(t) = A_1 x_1(t) + B_1 u(t)$$
$$y(t) = C_1 x_1(t) + D u(t)$$

how many states can we throw away, and how should we go about it?

how many states can we throw away, and how should we go about it?

balanced truncation

how many states can we throw away, and how should we go about it?

enter the observability/controllability Gramians

• observability Gramian:

$$W_o = \Psi_o^* \Psi_o = \int_0^\infty e^{A^* \tau} C^* C e^{A\tau} d\tau$$

• interpretation: for zero input, u(t) = 0 and initial state x_0 , the resulting output has energy

$$||y||_{2}^{2} = \int_{0}^{\infty} y^{*}(\tau)y(\tau)d\tau = \int_{0}^{\infty} (Ce^{A\tau}x_{0})^{*}Ce^{A\tau}x_{0}d\tau = x_{0}^{*}W_{o}x_{0}$$

- if we consider initial states with $|x_0| = 1$, some will give higher output norms than others
- states giving larger output norms are considered more observable

enter the observability/controllability Gramians

• controllability Gramian:

$$W_c = \Psi_c \Psi_c^* = \int_0^\infty e^{\tau A} B B^* e^{\tau A^*} \mathrm{d}\tau$$

• interpretation: if we want to reach a state x_0 , then the minimum input energy required to get there is

$$||u||^2 = x_0^* W_c^{-1} x_0$$

- if we consider initial states with $|x_0| = 1$, some are easier to "drive to" than others
- states that are easier to "drive to" are considered more observable

balanced truncation: change to coordinates in which the observability and controllability Gramians are *equal and diagonal*

• guaranteed error bound:

$$\sigma_{r+1} \le ||P - P_r||_{\infty} \le 2(\sigma_{r+1} + \sigma_{r+2} + \dots + \sigma_n)$$

• ("twice the sum of the tails")

• note: balanced truncation is not optimal, but is (provably) not far off

$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t) \quad -\infty < x < \infty$$

convection: $u = U + i2c_u$ dissipation: $\gamma = 1 + ic_d$ growth/decay: $\mu(x) = \mu_0 - c_u^2 + \mu_2 x^2/2$

discretized using Hermite collocation method

balanced truncation: applied to Ginzburg-Landau system

balanced truncation: applied to Ginzburg-Landau system

some applications

some applications

- 1. estimation
- 2. control

some lications

1. estimation

the take-away messages

Flame Loudspeaker

some lications

1. estimation

2. control

dynamic estimation

 $\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - \hat{y}(t))$ $\hat{y}(t) = C\hat{x}(t) + Du(t)$

dynamic estimation

• define error:
$$e(t) = \hat{x}(t) - x(t)$$

- then error satisfies: $\dot{e}(t) = (A LC) e(t)$
- can specify error dynamics by suitable choice of the matrix L
- Kalman filter amounts to a specific choice of L

dynamic estimation

- the Kalman filter:
 - is dynamic: i.e. it uses time-resolved data to form an estimate
 - accommodates unknown disturbances w and sensor noise n in its framework

some lications

1. estimation

2. control

POD is used to reduce the number of outputs

- DNS has $256 \times 220 = 56320$ outputs
- solution: decompose output into leading POD modes
- 31 POD modes are used
- the ERA model order is 29 (order 4 performs almost as well)

results

• we estimate the entire flow using

i. transverse velocity at sensor two only

ii.lift force only

transverse velocity at sensor two only

good results even for $n \gg q$

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

 $\overbrace{flow} \overbrace{\begin{array}{c} C_L \\ C$

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$

 $\overbrace{flow} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$

 $\overbrace{flow} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

results

• we estimate the entire flow using

i. transverse velocity at sensor two only

ii.lift force only

0	0	0
$v_1(t)$	$v_2(t)$	$v_3(t)$

lift force only

'local' or 'integral' sensing can work

some applications

1. estimation

$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

2. control

Ginzburg-Landau system

some applications

a single controller can be found that stabilizes for all $50 \le \text{Re} \le 100$

robust controllers are (very) forgiving

a single controller can be found that stabilizes for all $50 \le \text{Re} \le 100$

robust controllers are (very) forgiving

some applications

1. estimation

$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

2. control

some applications

1. estimation

$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

2. control

$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

without control

robust controllers are (very) forgiving

with control

robust controllers are (very) forgiving

compressible cavity oscillations

linear model 1: measured directly —impulse response

linear model 2: simple constituent models —impulse response

good enough for control \neq good enough for modelling

good enough for control \neq good enough for modelling