# A systems approach to fluid dynamics: input-output models

UNH/IAM Workshop November 2015

Simon Illingworth University of Melbourne



overview

## terminology

• frequency domain



• time domain: we will sometimes need the state-space description:

$$\dot{x}(t) = A x(t) + B u(t)$$
$$y(t) = C x(t) + D u(t)$$



$$\begin{split} m\ddot{q}(t) + c\dot{q}(t) + kq(t) &= f(t) \\ P(s) &= \frac{Q(s)}{F(s)} = \frac{1}{ms^2 + cs + k} & \qquad \mathcal{L} \\ P(j\omega) &= \frac{1}{(k - m\omega^2) + jc\,\omega} & \qquad s = j\omega \end{split}$$







$$P(j\omega) = \frac{1}{(k - m\omega^2) + jc\omega}$$





## the $\infty\text{-norm}\colon$ SISO case



$$||P||_{\infty} = \max_{\omega} P(j\omega)$$



#### the $\infty\text{-norm}\colon$ SISO case

























frequency response: MIMO case



 $Q(j\omega) = P(j\omega)F(j\omega)$ 

frequency response: MIMO case



$$Q(j\omega) = P(j\omega)F(j\omega)$$

$$P(j\omega) = \begin{bmatrix} P_{11}(j\omega) & P_{12}(j\omega) & P_{13}(j\omega) \\ P_{21}(j\omega) & P_{22}(j\omega) & P_{23}(j\omega) \\ P_{31}(j\omega) & P_{32}(j\omega) & P_{33}(j\omega) \end{bmatrix}$$

$$P(j\omega) = U\Sigma V^*$$

$$P(j\omega) = \begin{bmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix} \begin{bmatrix} -v_1 & - \\ -v_2 & - \\ -v_3 & - \end{bmatrix}$$

$$P(j\omega) = \sigma_1 u_1 v_1^* + \sigma_2 u_2 v_2^* + \sigma_3 u_3 v_3^*$$

• <u>interpretation</u>:  $\sigma_i$ : gains of the plant

columns of V: input directions of the plant

columns of U: output directions of the plant

(columns of U and V are orthogonal and of unit length)







frequency response: MIMO case



the  $\infty\text{-norm}\colon$  MIMO case

SISO: 
$$||P||_{\infty} = \max_{\omega} P(j\omega)$$

MIMO: 
$$||P||_{\infty} = \max_{\omega} \sigma_1(P(j\omega))$$



### $\underline{\infty}$ -norm: 'worst case' over all frequencies and all directions

#### compare with

<u>2-norm</u>: average over all frequencies and directions

#### $\infty$ -norm: 'worst case' over all frequencies and all directions



## the $\infty\text{-norm}$ and model reduction

• suppose we have a plant of order n

 $P_n$ 

• and we want to approximate it by a reduced-order plant of order r<n

#### $P_r$

• a good measure of the 'distance' between them is

$$||P_n - P_r||_{\infty}$$

#### balanced truncation

$$\dot{x}(t) = A x(t) + B u(t)$$
$$y(t) = C x(t) + D u(t)$$

• suppose we decompose the state into two parts,  $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ 

$$\begin{bmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + Du(t)$$

• we will keep  $x_1$  and throw away  $x_2$ , leaving us with

$$\dot{x_1}(t) = A_1 x_1(t) + B_1 u(t)$$
$$y(t) = C_1 x_1(t) + D u(t)$$

how many states can we throw away, and how should we go about it?

#### how many states can we throw away, and how should we go about it?



## balanced truncation

#### how many states can we throw away, and how should we go about it?



## enter the observability/controllability Gramians

• observability Gramian:

$$W_o = \Psi_o^* \Psi_o = \int_0^\infty e^{A^* \tau} C^* C e^{A\tau} d\tau$$

• interpretation: for zero input, u(t) = 0 and initial state  $x_0$ , the resulting output has energy

$$||y||_{2}^{2} = \int_{0}^{\infty} y^{*}(\tau)y(\tau)d\tau = \int_{0}^{\infty} (Ce^{A\tau}x_{0})^{*}Ce^{A\tau}x_{0}d\tau = x_{0}^{*}W_{o}x_{0}$$

- if we consider initial states with  $|x_0| = 1$ , some will give higher output norms than others
- states giving larger output norms are considered more observable

## enter the observability/controllability Gramians

• controllability Gramian:

$$W_c = \Psi_c \Psi_c^* = \int_0^\infty e^{\tau A} B B^* e^{\tau A^*} \mathrm{d}\tau$$

• interpretation: if we want to reach a state  $x_0$ , then the minimum input energy required to get there is

$$||u||^2 = x_0^* W_c^{-1} x_0$$

- if we consider initial states with  $|x_0| = 1$ , some are easier to "drive to" than others
- states that are easier to "drive to" are considered more observable

**balanced truncation:** change to coordinates in which the observability and controllability Gramians are *equal and diagonal* 

• guaranteed error bound:

$$\sigma_{r+1} \le ||P - P_r||_{\infty} \le 2(\sigma_{r+1} + \sigma_{r+2} + \dots + \sigma_n)$$

• ("twice the sum of the tails")

• note: balanced truncation is not optimal, but is (provably) not far off

$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t) \quad -\infty < x < \infty$$

convection:  $u = U + i2c_u$ dissipation:  $\gamma = 1 + ic_d$ growth/decay:  $\mu(x) = \mu_0 - c_u^2 + \mu_2 x^2/2$ 

discretized using Hermite collocation method






### balanced truncation: applied to Ginzburg-Landau system



## balanced truncation: applied to Ginzburg-Landau system



some applications

# some applications

- 1. estimation
- 2. control

# some lications

1. estimation







### the take-away messages



Flame Loudspeaker

# some lications

#### 1. estimation





#### 2. control





### dynamic estimation





 $\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - \hat{y}(t))$  $\hat{y}(t) = C\hat{x}(t) + Du(t)$ 

## dynamic estimation



• define error: 
$$e(t) = \hat{x}(t) - x(t)$$

- then error satisfies:  $\dot{e}(t) = (A LC) e(t)$
- can specify error dynamics by suitable choice of the matrix L
- Kalman filter amounts to a specific choice of L

## dynamic estimation



- the Kalman filter:
  - is dynamic: i.e. it uses time-resolved data to form an estimate
  - accommodates unknown disturbances w and sensor noise n in its framework

# some lications

### 1. estimation





#### 2. control



## POD is used to reduce the number of outputs



- DNS has  $256 \times 220 = 56320$  outputs
- solution: decompose output into leading POD modes
- 31 POD modes are used
- the ERA model order is 29 (order 4 performs almost as well)

### results

• we estimate the entire flow using

i. transverse velocity at sensor two only

ii.lift force only



### transverse velocity at sensor two only





good results even for  $n \gg q$ 



$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$





$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$



 $\overbrace{flow} \overbrace{\begin{array}{c} C_L \\ C$ 

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$



$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$



$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$



 $\overbrace{flow} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ 

$$PE(t) = \frac{1}{2} \iint u_T^2(x, y, t) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad u_T = \sqrt{u^2 + v^2}$$

$$\Delta(t) = \frac{1}{2} \iint [\hat{u}_T(x, y, t) - u_T(x, y, t)]^2 \,\mathrm{d}x \,\mathrm{d}y$$



 $\overbrace{flow} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ 





### results

• we estimate the entire flow using

i. transverse velocity at sensor two only

### ii.lift force only



| 0        | 0        | 0        |
|----------|----------|----------|
| $v_1(t)$ | $v_2(t)$ | $v_3(t)$ |

# lift force only





'local' or 'integral' sensing can work

# some applications

1. estimation



$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

#### 2. control



## Ginzburg-Landau system



# some applications



a single controller can be found that stabilizes for all  $50 \le \text{Re} \le 100$ 



robust controllers are (very) forgiving

a single controller can be found that stabilizes for all  $50 \le \text{Re} \le 100$ 



robust controllers are (very) forgiving

## some applications

1. estimation



$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

#### 2. control







# some applications

1. estimation



$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$

#### 2. control



$$\frac{\partial q}{\partial t}(x,t) = \left(-\nu \frac{\partial}{\partial x} + \gamma \frac{\partial^2}{\partial x^2} + \mu(x)\right) q(x,t)$$





## without control



robust controllers are (very) forgiving

# with control



robust controllers are (very) forgiving

## compressible cavity oscillations



# linear model 1: measured directly —impulse response



# linear model 2: simple constituent models —impulse response


## good enough for control $\neq$ good enough for modelling



good enough for control  $\neq$  good enough for modelling