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Sparse Representations

Pablo Picasso
“Bull”

(1945–1946)



Sparse Representations

Sparse Representation: Description based on a “minimal” set of “essential” features.

• Essential features can inform understanding.
• Significance of features to a description depends on context.
• Everything should be made as simple as possible, but not simpler.



Sparse Representations in Fluid Dynamics

Coherent Structures:
Fluid flows have large (infinite) number of degrees of freedom, but most are “inactive”.

Only a few interacting “active modes” dominate the complex evolution of the fluid flow.

Ruelle and Takens (Commun. Math. Phys., 1971); Hassan (Phys. Fluids, 1983);
Sirovich (Quarterly Appl. Math., 1987); Holmes, Lumley, Berkooz (1998).



Systems Perspectives in Fluid Dynamics

Three broad classes of problems:
1 The study of dynamical systems for which the evolution law is given.

2 The extraction of qualitative and quantitative information from “data” collected in
experiments/simulations.

3 A combination of (1) and (2).

Obtaining the data is one hurdle (i.e., experiments and numerics);
interpreting and making sense of the data is another.



Systems Perspectives in Fluid Dynamics

Three broad classes of problems:
1 The study of dynamical systems for which the evolution law is given.

2 The extraction of qualitative and quantitative information from “data” collected in
experiments/simulations.

3 A combination of (1) and (2).

Obtaining the data is one hurdle (i.e., experiments and numerics);
interpreting and making sense of the data is another.



Data-Informed Sparse (Dynamical) Representations

Understanding large amounts of multi-dimensional data requires synthesis into
interpretable information.

Sparse representations address this issue through a reformulation of the data into
fewer variables, while preserving the “essential features” of the original dataset.

Two key points:
1 Not all variables are relevant, so identify the relevant variables; ignore the rest.

• e.g., (I/O systems) relevance of inputs can be quantified by influence on outputs
(e.g., correlations between inputs/outputs); eliminate inputs with negligible influence.

2 Dimensionality of data may be larger than necessary (even if all data relevant), so
determine dependencies and transform into a lower-order representation.
• e.g., two highly correlated variables provide similar information; thus, knowing about one

provides information about the other: instead of removing, find a transformed set.

“New dataset” should contain fewer variables, but should also preserve “interesting
features” of the original dataset.



Data-Informed Sparse Representations and POD/PCA

Example: Proper Orthogonal Decomposition (POD)

Consider a matrix of snapshot data X =
[

x1 x2 · · · xm
]
∈ Rn×m.

Use data covariance CX = 1
m−1 XX∗ to identify

• relevant variables
• by assumption, large variances (diagonal terms in CX ) correspond to dynamics of

interest, whereas low variances are associated with uninteresting dynamics.
• redundant data

• redundancy of variables quantified by covariances (off-diagonal terms in CX ): high
covariance indicates high redundancy, whereas low covariance indicates statistical
independence.

Diagonalizing CX provides an ideal view of the data, since
• all redundancies will be removed, and
• directions with largest variance will be isolated and ordered.



Data-Informed Sparse Representations and POD/PCA

Example: Proper Orthogonal Decomposition (POD) continued. . .

Method 1: Diagonalize covariance via eigendecomposition
Rewrite XX∗ = SΛS∗ with a unitary matrix S of eigenvectors arranged in columns, and
a diagonal matrix Λ of eigenvalues.

Columns of S form a POD basis, which yields a transformed dataset Y = S∗X with
diagonal covariance CY = 1

m−1 YY∗ = 1
m−1 Λ



Data-Informed Sparse Representations and POD/PCA

Example: Proper Orthogonal Decomposition (POD) continued. . .

Method 1: Diagonalize covariance via eigendecomposition
Rewrite XX∗ = SΛS∗ with a unitary matrix S of eigenvectors arranged in columns, and
a diagonal matrix Λ of eigenvalues.

Columns of S form a POD basis, which yields a transformed dataset Y = S∗X with
diagonal covariance CY = 1

m−1 YY∗ = 1
m−1 Λ

Method 2: Diagonalize covariance via singular value decomposition (SVD)



Singular Value Decomposition (SVD)

SVD is a factorization of an n ×m matrix A (assume m ≥ n):

A = UΣV∗

U n × n unitary matrix
Σ n ×m rectangular diagonal matrix (sorted entries, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0)

V∗ m ×m unitary matrix

Useful Properties:
• Guaranteed existence for any A (not true of eig. decomp., even for square A).

• ui and vi form orthonormal bases for the four fundamental subspaces of A.

• Pseudo-inverse of A can be expressed as A+ = V Σ+U∗.

• If rank(A) = r , then Σ will have exactly r non-zero diagonal entries (σ1, . . . , σr ).



An intuitive view of the SVD

Since V is unitary, AV = UΣ or Avi = σi ui .

SVD

Ben Southworth

31 May 2013

Abstract

In this paper we will first introduce the singular value decomposition (SVD) of
a matrix and basic theory behind it. We will then go over the general algorithm,
along with implementations in SAGE and computational e�ciency comparisons
with built in libraries. At the end we will discuss principal component analysis and
its relation with the SVD as one of many applications.

1 Introduction to SVD

The singular value decomposition (SVD) of an m ⇥ n matrix A is a factorization

A = U⌃V ⇤,

where U is an m⇥m unitary matrix, ⌃ an m⇥n rectangular diagonal matrix, and
V ⇤ an n ⇥ n unitary matrix. V ⇤ is the conjugate transpose of V , i.e. the (i, j)th
entry of V is the complex conjugate of the (j, i)th entry of V ⇤. Note, a square
matrix A 2 Cm⇥m is unitary if A⇤ = A�1, and the singular values of A are the
square roots of the eigenvalues of A⇤A, all of which are real and non-negative.

Figure 1: SVD of a 2 ⇥ 2 matrix [9].

Since V is unitary, V ⇤ = V �1, and thus we can rewrite the SVD as AV = U⌃,
which can be broken down into individual components as Avi = �iui. Using this
format it is easiest to think of the SVD of a matrix A by breaking down its action
on the unit sphere as shown in Figure 1. For the sake of simplicity, let A be some
real matrix A 2 Rm⇥n, where m � n. Then A maps the unit sphere S 2 Rn to a
hyper ellipse AS 2 Rm. The unit sphere is ”stretched” by some factors �1, ...,�m

in some orthogonal directions u1, ..., um 2 Rm. The vectors {�iui} are called the

1

Courtesy of Trefethen and Bau (1997)

Consider the action of A ∈ Rn×m on the unit sphere S:

• Transforms the unit sphere S ∈ Rm into a hyper-ellipse AS ∈ Rn.
• S is stretched by σi along the orthogonal directions ui (i.e., in the direction of the

principle semi-axes of the hyper-ellipse AS.



Data-Informed Sparse Representations and POD/PCA

Example: Proper Orthogonal Decomposition (POD) continued. . .

Method 1: Diagonalize covariance via eigendecomposition
Rewrite XX∗ = SΛS∗ with a unitary matrix S of eigenvectors arranged in columns, and
a diagonal matrix Λ of eigenvalues.

Columns of S form a POD basis, which yields a transformed dataset Y = S∗X with
diagonal covariance CY = 1

m−1 YY∗ = 1
m−1 Λ

Method 2: Diagonalize covariance via singular value decomposition (SVD)
Rewrite X = UΣV∗, then columns of U form a POD basis.

Transformed dataset Y = U∗X will have diagonal covariance
CY = 1

m−1 YY∗ = 1
m−1 Σ2.

Note: there is an explicit connection between SVD/eigendecomposition methods.



Sparse Representations and Low-Rank Approximation

Another view of relevance and redundancy in data: Low-rank approximation

Given: a matrix of snapshot data X =
[

x1 x2 · · · xm
]
∈ Rn×m.

Find: a low-rank matrix X̂ ∈ Rn×m that approximates X “optimally” in some sense.
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Example: Optimal in Frobenius Norm (Eckart-Young-Mirsky Theorem)

minimize
X̂

‖X − X̂‖F such that r = rank(X̂) ≤ rank(X)



Sparse Representations and Low-Rank Approximation

Another view of relevance and redundancy in data: Low-rank approximation

Given: a matrix of snapshot data X =
[

x1 x2 · · · xm
]
∈ Rn×m.

Find: a low-rank matrix X̂ ∈ Rn×m that approximates X “optimally” in some sense.

Example: Optimal in Frobenius Norm (Eckart-Young-Mirsky Theorem)

minimize
X̂

‖X − X̂‖F such that r = rank(X̂) ≤ rank(X)

Analytical solution in terms of the (truncated) SVD:

X̂optimal = Ur Σr V∗r

where Σr , Ur , Vr correspond to the r largest singular values of X = UΣV∗.



Coming up this session...

Systems perspectives to be discussed this session:

1 Dynamic Modes and the Koopman Operator (Hemati)

2 Input-Output Models (Illingworth)

3 Resolvent Models and Passivity-Based Control (Sharma)
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The Koopman Operator

Definition (Koopman, PNAS 1931)

For a discrete-time dynamical system

x 7→ F (x)

where x ∈M, the Koopman operator K acts on scalar functions g :M→ C, as

Kg(x) := g(F (x)).

• K is linear and acts on functions onM.
• Analyze dynamical system via the spectral properties of K (Mezić, 2005)

F (x) =
∞∑

k=1

λkϕkξk (x)

where λk , ϕk , and ξk are the Koopman eigenvalues, modes, and eigenfunctions,
respectively.



The Koopman Operator
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Fig. 1 A cartoon of the Koopman operator and how it relates to the underlying dynamical system. The top
path updates the state, x ∈ M, using the evolution operator F. The bottom path updates the observables,
ψ ∈ F , using the Koopman operator, K. Here, both dynamical systems are autonomous, so the (discrete)
time, n ∈ Z, does not appear explicitly. The connection between the states and observables is through the
full-state observable g(x) = x. By writing g in terms of the Koopman eigenfunctions, we substitute the
complex evolution of xwith the straightforward, linear evolution of theϕi . To reconstruct x, we superimpose
the Koopman eigenfunctions evaluated at a point, which satisfy (Kϕi )(xi ) = µiϕi (xi ), using the Koopman
modes as shown in (3). As a result, these two “paths” commute, and one can either solve a finite dimensional
but nonlinear problem (the top path) or an infinite dimensional but linear problem (the bottom path) if one
can compute the Koopman eigenvalues, eigenfunctions, and modes

g(x(t + #t)) = (K#t g)(x(t)) =
NK∑

k=1

eλk#tvkϕk(x(t)), (6)

which is similar in form to (3), but now “fast” and “slow” are determined by the real
part of λk rather than its absolute value.

In what follows, we will not have access to the “right-hand side” function, f ,
and therefore cannot approximate K̂ directly. However, if the discrete-time dynamical
system F is the flow map associated with f for a fixed time interval #t (i.e., K =
K#t ), then (3) and (6) are equivalent with µk = eλk#t . As a result, although we
will be approximating the Koopman operator associated with discrete-time dynamical
systems, we will often present our results in terms of λk rather than µk when the
underlying system is a flow rather than map.

123

Courtesy of Williams, Kevrekidis, Rowley (2015)



Data-Driven Koopman Spectral Analysis

• The Koopman operator is an infinite-dimensional linear operator that captures
everything about a nonlinear dynamical system.
• Koopman eigenvalues −→ “temporal” description
• Koopman modes −→ “spatial” description
• Koopman eigenfunctions −→ linear dynamics (via nonlinear change of coordinates)

• Dynamic Mode Decomposition (DMD) is an algorithm for computing Koopman
eigenvalues, modes, and eigenfunctions from snapshot data. . . (sometimes)



Dynamic Mode Decomposition (DMD)

DMD first introduced in the fluids community (Schmid & Sesterhenn, 2008).

Process snapshot data to extract dynamically relevant spatial structures and
associated temporal characteristics (i.e., growth/decay rates and frequencies).
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DMD analysis is relevant for nonlinear systems owing to connections with Koopman
spectral analysis (Rowley et al., 2009; Tu et al., 2014; Williams et al., 2015).



Dynamic Mode Decomposition (DMD)

Consider a discrete-time system

x 7→ f (x) ∈ Rn

with snapshot data matrices

X :=
[

x1 x2 · · · xm
]

Y :=
[

f (x1) f (x2) · · · f (xm)
]

DMD modes and eigenvalues
correspond to eigenvectors and
eigenvalues of the DMD operator

K := YX + ∈ Rn×n.

(Tu et al., 2014)

K̃ = U∗
r YVr Σ−1

r ∈ Rr×r
,

K = Ur K̃ U∗
r ∈ Rn×n
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DMD and the Nature of “Data”

While DMD has been used in a number of areas, the standard framework can be
“upgraded” to accommodate practical challenges that arise due to the “nature of data”.

Data scientists characterized data by a set of V’s:
• Volume −→ how large?
• Velocity−→how fast?
• Veracity−→ how trustworthy?
• Variety −→ how many types?

Ultimately, we only care about one V:
• Value−→what is learned?



What to do when faced with lots of snapshots?
A Streaming Dynamic Mode Decomposition



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

What is DMD really doing?

1 Compute an orthonormal basis for the image of X .

2 Construct a “small” proxy system to solve the eigenproblem.

3 Relate the eigenvectors and eigenvalues of the small problem to those of the full
problem (i.e., K = QX K̃ Q∗X ).

Standard DMD

K̃︸ ︷︷ ︸
rX×rX

:= Q∗X︸ ︷︷ ︸
rX×n

Y

︸ ︷︷ ︸
n×m

X +

︸ ︷︷ ︸
m×n

QX

︸ ︷︷ ︸
n×rX

,
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To design a streaming DMD method, assume:

1 Only one snapshot pair (xi , yi ) can be stored at a given time (i.e., “single-pass”).

2 The data in X and Y are low-rank.



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Standard DMD

K̃︸ ︷︷ ︸
rX×rX

:= Q∗X︸ ︷︷ ︸
rX×n

Y

︸ ︷︷ ︸
n×m

X +

︸ ︷︷ ︸
m×n

QX

︸ ︷︷ ︸
n×rX

,

Re-write DMD as

K̃︸ ︷︷ ︸
rX×rX

= Q∗X︸ ︷︷ ︸
rX×n

QY

︸ ︷︷ ︸
n×rY

A︸ ︷︷ ︸
rY×rX

G+
X︸ ︷︷ ︸

rX×rX

.

• QX , QY can be computed via a Gram-Schmidt procedure.
• A := Ỹ X̃∗, GX := X̃ X̃∗, X̃ := Q∗X X , Ỹ := Q∗Y Y can be dynamically updated.



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Standard DMD

K̃︸ ︷︷ ︸
rX×rX

:= Q∗X︸ ︷︷ ︸
rX×n

Y

︸ ︷︷ ︸
n×m

X +

︸ ︷︷ ︸
m×n

QX

︸ ︷︷ ︸
n×rX

,

Re-write DMD as

K̃︸ ︷︷ ︸
rX×rX

= Q∗X︸ ︷︷ ︸
rX×n

QY

︸ ︷︷ ︸
n×rY

A︸ ︷︷ ︸
rY×rX

G+
X︸ ︷︷ ︸

rX×rX

.

• (Optional) Maintain low-rank via POD compression.
• Define GY := Ỹ Ỹ∗ and make use of leading eigenvectors of GX , GY .



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Standard DMD

K̃︸ ︷︷ ︸
rX×rX

:= Q∗X︸ ︷︷ ︸
rX×n

Y

︸ ︷︷ ︸
n×m

X +

︸ ︷︷ ︸
m×n

QX

︸ ︷︷ ︸
n×rX

,

Re-write DMD as

K̃︸ ︷︷ ︸
rX×rX

= Q∗X︸ ︷︷ ︸
rX×n

QY

︸ ︷︷ ︸
n×rY

A︸ ︷︷ ︸
rY×rX

G+
X︸ ︷︷ ︸

rX×rX

.

• O(nr2) operations per iterate with mode computations.
• O(nr) operations per iterate without mode computations.
• O(nr) storage of matrix entries (single-pass method).



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Example #1: Numerical simulation data for laminar flow past a cylinder (Re=100)

No compression: Data is already low-rank.



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

DMD Mode 1
(λ1 = 0.998 + 0.0531ı)

DMD Mode 2
(λ2 = 0.994 + 0.106ı)

• Filled contours are DMD modes from batch-processed DMD.
• Gray curves are DMD modes from streaming DMD.



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Example #2: PIV experiment data for laminar flow past a cylinder (Re=413)

PIV data courtesy of Jessica Shang (Stanford).



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Noise makes the data full-rank, regardless of the nature of the underlying dynamics.

→ Apply POD Compression (r = 25)

Frequency Spectrum
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Batch-Processed DMD: 3 Cores; Wall-clock ∼ O(hours)
Streaming DMD: My laptop; Wall-clock ∼ O(minutes)

n = 10800, m = 8000



Dynamic Mode Decomposition (DMD)
Accommodating Large and Streaming Datasets

Batch-Processed DMD

f = 0.888 Hz f = 1.744 Hz f = 2.732 Hz

Streaming DMD

f = 0.887 Hz f = 1.737 Hz f = 2.664 Hz



What to do when faced with uncertain/noisy data?
A Noise-Aware Dynamic Mode Decomposition



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Measurement noise and data uncertainty are common characteristics of many
datasets.



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Current practice is to apply DMD to noisy datasets directly, but to incorporate some
form of truncation, ensemble averaging, and/or cross-validation for “de-noising” the
results.

• How does measurement noise influence DMD analyses?
• Are such analyses representative of the “true” system dynamics?



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Example: A complex-valued linear system (n = 250, r = 2)
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• Additive measurement noise (∆X , ∆Y ) ∼ CN (0, 0.05).
• Computations repeated for 200 independent noise realizations.



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Example: A complex-valued linear system (n = 250, r = 2)
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m = 100

• Additive measurement noise (∆X , ∆Y ) ∼ CN (0, 0.05).
• Computations repeated for 200 independent noise realizations.

Here, DMD identifies unstable eigenvalues as stable and decaying!



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Example: A complex-valued linear system (n = 250, r = 2)
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• Additive measurement noise (∆X , ∆Y ) ∼ CN (0, 0.05).
• Computations repeated for 200 independent noise realizations.

Here, DMD identifies unstable eigenvalues as stable and decaying!



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Assume additive zero-mean i.i.d. noise with variance σ2 on all snapshots (X ,Y ), and
recall that K = YX + (or, K̃ = Q∗X YX +QX ).

For small noise, noise-induced error has an approximate closed-form solution, so
correct for this error by considering the eigendecomposition of

K̃corrected = K̃
(

I −mσ2Σ−2
)

m := # snapshots

Σ := matrix of non-zero singular values of X

σ2 := measurement noise variance



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Instead of relying on knowledge of the noise distribution, let’s directly consider the
interpretation of DMD as

K = YX +.
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When snapshots are noisy, the residual ∆Y can be interpreted as a “noise-correction.”



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Instead of relying on knowledge of the noise distribution, let’s directly consider the
interpretation of DMD as

K = YX +.

In the over-constrained case (i.e.,m > n), this can be re-written as

min
K ,∆Y

‖∆Y‖F , subject to Y + ∆Y = KX .

When snapshots are noisy, the residual ∆Y can be interpreted as a “noise-correction.”

What about ∆X? −→ Asymmetric treatment of noise!



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Instead, consider a problem of total least-squares:

min
K ,∆X ,∆Y

∥∥∥∥[∆X
∆Y

]∥∥∥∥
F
, subject to Y + ∆Y = K (X + ∆X).



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Instead, consider a problem of total least-squares:

min
K ,∆X ,∆Y

∥∥∥∥[∆X
∆Y

]∥∥∥∥
F
, subject to Y + ∆Y = K (X + ∆X).



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

A two-stage method for noise-aware “total” DMD (TDMD) analysis:

Stage 1: Subspace Projection

Define an augmented snapshot matrix Z :=

[
X
Y

]
,

then Ȳ = YPZ∗
n

, X̄ = XPZ∗
n

,

where Zn is the best rank-n approximation of Z .

∗When the underlying dynamics are r -dimensional, replace n with r .
Results are “best” when r � m.

Stage 2: Operator Identification

Perform DMD on the projected snapshots X̄ , Ȳ .

∗Any variant of DMD can be used here (e.g., streaming DMD).
• the “de-biasing” occurs in the subspace projection stage.
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Example #1: A complex-valued linear system (n = 250, r = 2)
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m = 500

• Additive measurement noise (∆X , ∆Y ) ∼ CN (0, 0.05).
• Computations repeated for 200 independent noise realizations.
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0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Re{λi}

I
m
{
λ
i
}

 

 

True
DMD
TDMD

m = 100

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Re{λi}

I
m
{
λ
i
}

 

 

True
DMD
TDMD

m = 200

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Re{λi}

I
m
{
λ
i
}

 

 

True
DMD
TDMD

m = 500

• Additive measurement noise (∆X , ∆Y ) ∼ CN (0, 0.05).
• Computations repeated for 200 independent noise realizations.



Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Example #2: PIV data from a separated flow over a flat plate (Re=10,000)

video slowed 40×

n = 42 976, m = 3000
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DMD (r = 25) TDMD (r = 25)

f = 177 Hz, |λ| = 0.91, |α| = 0.02 f = 177 Hz, |λ| = 0.99, |α| = 0.02

f = 130 Hz, |λ| = 0.93, |α| = 0.03 f = 127 Hz, |λ| = 0.99, |α| = 0.03

f = 106 Hz, |λ| = 0.99, |α| = 0.03 f = 106 Hz, |λ| = 1.0, |α| = 0.04

f = 98 Hz, |λ| = 0.93, |α| = 0.04 f = 98 Hz, |λ| = 0.99, |α| = 0.04

f = 75 Hz, |λ| = 0.92, |α| = 0.01 f = 71 Hz, |λ| = 0.99, |α| = 0.02
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DMD (r = 25) TDMD (r = 25)

f = 65 Hz, |λ| = 0.90, |α| = 0.02 f = 63 Hz, |λ| = 0.99, |α| = 0.03

f = 58 Hz, |λ| = 0.96, |α| = 0.003 f = 49 Hz, |λ| = 0.99, |α| = 0.02

f = 23 Hz, |λ| = 0.89, |α| = 0.04 f = 23 Hz, |λ| = 0.99, |α| = 0.02

f = 17 Hz, |λ| = 0.94, |α| = 0.04 f = 17 Hz, |λ| = 0.98, |α| = 0.02
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Example #3: PIV data from a separated flow over a flat plate (Re=10,000), now using
the streaming formulations
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Example #3: PIV data from a separated flow over a flat plate (Re=10,000), now using
the streaming formulations
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Dynamic Mode Decomposition (DMD)
Accommodating Measurement Noise

Example #3: PIV data from a separated flow over a flat plate (Re=10,000), now using
the streaming formulations

DMD (r = 25) TDMD (r = 25)

f = 107 Hz f = 137 Hz

f = 103 Hz f = 109 Hz

f = 83 Hz f = 94 Hz

f = 59 Hz f = 66 Hz

f = 50 Hz f = 42 Hz



What to do when the “right” observables are not
available?

An Extended Dynamic Mode Decomposition



Dynamic Mode Decomposition (DMD)
Accommodating Available Observables for Connections with Koopman

Definition (Koopman, PNAS 1931)

For a discrete-time dynamical system

x 7→ F (x)

where x ∈M, the Koopman operator K acts on scalar functions g :M→ C, as

Kg(x) := g(F (x)).

• K is linear and acts on functions onM.
• Analyze dynamical system via the spectral properties of K (Mezić, 2005)

F (x) =
∞∑

k=1

λkϕkξk (x)

where λk , ϕk , and ξk are the Koopman eigenvalues, modes, and eigenfunctions,
respectively.
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Consider the map [
x1
x2

]
7→
[

λx1
µx2 + (λ2 − µ)cx2

1

]
.

This system has a stable equilibrium at the origin.

The Koopman eigenvalues are λ, µ, λµ, λ2, µ2, . . .
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Consider the map [
x1
x2

]
7→
[

λx1
µx2 + (λ2 − µ)cx2

1

]
.

This system has a stable equilibrium at the origin.

The Koopman eigenvalues are λ, µ, λµ, λ2, µ2, . . .

A few examples:
Set λ = 0.9, µ = 0.5.

Apply DMD with initial states x given by (1,1), (5,5), (-1,1), (-5,5).

Case 1: c = 0 (linear map),
DMD eigenvalues λDMD = [0.9, 0.5] correspond to Koopman eigenvalues
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Consider the map [
x1
x2

]
7→
[

λx1
µx2 + (λ2 − µ)cx2

1

]
.

This system has a stable equilibrium at the origin.

The Koopman eigenvalues are λ, µ, λµ, λ2, µ2, . . .

A few examples:
Set λ = 0.9, µ = 0.5.

Apply DMD with initial states x given by (1,1), (5,5), (-1,1), (-5,5).

Case 1: c = 0 (linear map),
DMD eigenvalues λDMD = [0.9, 0.5] correspond to Koopman eigenvalues

Case 2: c = 1 (nonlinear map),
DMD eigenvalues λDMD = [0.9, 2.002] do not correspond to Koopman eigenvalues,
and the equilibrium appears unstable!
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Consider the map [
x1
x2

]
7→
[

λx1
µx2 + (λ2 − µ)cx2

1

]
.

This system has a stable equilibrium at the origin.

The Koopman eigenvalues are λ, µ, λµ, λ2, µ2, . . .

A few examples:
Set λ = 0.9, µ = 0.5.

Apply DMD with initial states x given by (1,1), (5,5), (-1,1), (-5,5).

Case 1: c = 0 (linear map),
DMD eigenvalues λDMD = [0.9, 0.5] correspond to Koopman eigenvalues

Case 2: c = 1 (nonlinear map),
DMD eigenvalues λDMD = [0.9, 2.002] do not correspond to Koopman eigenvalues,
and the equilibrium appears unstable!

Case 3: c = 1 (nonlinear map, extended set of observables),
now assume access to more observables g = (x1, x2, x2

1 ), then DMD eigenvalues
λDMD = [0.9, 0.5, 0.81] correspond to Koopman eigenvalues.



Dynamic Mode Decomposition (DMD)
Accommodating Available Observables for Connections with Koopman

Consider the map [
x1
x2

]
7→
[

λx1
µx2 + (λ2 − µ)cx2

1

]
.

This system has a stable equilibrium at the origin.

The Koopman eigenvalues are λ, µ, λµ, λ2, µ2, . . .

A few examples:
Set λ = 0.9, µ = 0.5.
Apply DMD with initial states x given by (1,1), (5,5), (-1,1), (-5,5).

Case 1: c = 0 (linear map),
DMD eigenvalues λDMD = [0.9, 0.5] correspond to Koopman eigenvalues
Case 2: c = 1 (nonlinear map),
DMD eigenvalues λDMD = [0.9, 2.002] do not correspond to Koopman eigenvalues,
and the equilibrium appears unstable!
Case 3: c = 1 (nonlinear map, extended set of observables),
now assume access to more observables g = (x1, x2, x2

1 ), then DMD eigenvalues
λDMD = [0.9, 0.5, 0.81] correspond to Koopman eigenvalues.

Note, in Case 3, the extended set of observables g(x) spans the set of Koopman
eigenfunctions, ξλ(x) = x1, ξµ(x) = x2 − cx2

1 .



Dynamic Mode Decomposition (DMD)
Accommodating Available Observables for Connections with Koopman

Theorem: Koopman and DMD (Tu et al., 2014; Williams et al., 2015)

Let ξ be an eigenfunction of K with eigenvalue λ, and suppose ξ ∈ span{gj}, so that

ξ(x) = w1g1(x) + w2g2(x) + · · ·+ wngn(x)

for some w = (w1, . . . ,wn) ∈ Cn. If w ∈ R(X), then w is a left eigenvector of K with
eigenvalue λ: w∗K = λw∗

Thus, DMD eigenvalues are Koopman eigenvalues, provided:

1 the set of observables is sufficiently large (i.e., ξ ∈ span{gj})
2 the dataset is sufficiently rich (i.e., w ∈ R(X))

Furthermore, Koopman eigenfunctions can be computed from the left eigenvectors of
the DMD matrix K , as ξ(x) = w∗g(x).



Dynamic Mode Decomposition (DMD)
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Theorem: Koopman and DMD (Tu et al., 2014; Williams et al., 2015)

Let ξ be an eigenfunction of K with eigenvalue λ, and suppose ξ ∈ span{gj}, so that

ξ(x) = w1g1(x) + w2g2(x) + · · ·+ wngn(x)

for some w = (w1, . . . ,wn) ∈ Cn. If w ∈ R(X), then w is a left eigenvector of K with
eigenvalue λ: w∗K = λw∗

Thus, DMD eigenvalues are Koopman eigenvalues, provided:

1 the set of observables is sufficiently large (i.e., ξ ∈ span{gj})
2 the dataset is sufficiently rich (i.e., w ∈ R(X))

Furthermore, Koopman eigenfunctions can be computed from the left eigenvectors of
the DMD matrix K , as ξ(x) = w∗g(x).

• Note: for a linear system, K has linear eigenfunctions, so the full-state observable
g(x) = x is sufficient to capture these; for nonlinear systems, however, linear
observables are typically insufficient→ transform the available data to construct an
extended set of observables.



Conclusions

• Streaming DMD for handling large and streaming datasets.
• Hemati, Williams, & Rowley (2014),

“Dynamic Mode Decomposition for Large and Streaming Datasets,”
Physics of Fluids.

• Noise-Corrected and Noise-Aware/Total DMD for handling noisy data.
• Hemati, Rowley, Deem, Cattafesta (2015),

“De-Biasing the Dynamic Mode Decomposition for Applied Koopman Spectral Analysis,”
[pre-print, arXiv:1502.03854].

• Dawson, Hemati, Williams, Rowley (2015),
“Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition”
[pre-print, arXiv: 1507.02264].

• Extended DMD for handling insufficiently rich sets of observables.
• Williams, Kevrekidis, Rowley (2015),

“A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition,”
J. Nonlinear Science.

Python and Matlab packages available for download at http://z.umn.edu/dmdtools
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