Exact coherent structures in turbulence: framework, numerics, and questions

John F. Gibson

Integrated Applied Mathematics
Mathematics \& Statistics
University of New Hampshire

UNH Workshop on High-Re Boundary Layer Turbulence 20 November 2015
alternate title

Yes, you can do bifurcation analysis of a DNS

I Conceptual framework: low-d dynamical systems

II Numerical methods: Newton-Krylov-hookstep

III Survey of results: mostly mine

IV Questions and future directions

Conceptual framework

low-d dynamical systems

Lorenz system

$$
\begin{aligned}
& \dot{x}=\sigma(y-x) \\
& \dot{y}=\rho x-y-x z \\
& \dot{z}=-\beta z+x y, \quad \sigma=10, \beta=8 / 3, \rho=28
\end{aligned}
$$

Equilibria at origin and

$$
A, B=(\pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1) \doteq(\pm 8.48, \pm 8.48,27)
$$

Lorenz system

Eigenvalues at A, B

$$
\begin{aligned}
\lambda_{1} & =-13.8 \\
\lambda_{2,3} & =0.094 \pm 10.2 i
\end{aligned}
$$

Equilibria organize the dynamics but are not part of the attractor.
The attractor is best characterized by its periodic orbits.

How to find the periodic orbits of Lorenz

Construct 1-d Poincare section on nearly 2-d surface of attractor.
Parameterize as $-1 \leq \eta \leq 1$.

Lorenz: Poincare map

Flow induces map from $-1 \leq \eta \leq 1$ onto itself: $\eta_{n+1}=f\left(\eta_{n}\right)$.
Associate $-1 \leq \eta<0$ with A and $0<\eta \leq 1$ with B .
Note discontinuity of map at $\eta=0$.

$$
f
$$

Graph of f mapping η onto itself: $\eta_{n+1}=f\left(\eta_{n}\right)$.
Period-1 orbit would have $\eta_{n+1}=f\left(\eta_{n}\right)=\eta_{n}$.
No intersections of $f(\eta)$ with identity \Rightarrow no period-1 orbits.

$$
f^{2}(\eta)=f(f(\eta))
$$

periodic orbit $A B$
2nd iterate $\eta_{n+2}=f^{2}\left(\eta_{n}\right)$ intersects identity at two points.
\Rightarrow one period-2 orbit $\eta=f^{2}(\eta)$, symbol sequence $\mathrm{AB} \mathrm{AB} \mathrm{AB} \mathrm{AB} \ldots$

Lorenz Poincare map, 3rd iterate

3rd iterate $\eta_{n+3}=f^{3}\left(\eta_{n}\right)$ intersects identity at six points.
\Rightarrow two period-3 orbits $\eta=f^{3}(\eta)$, symbol sequences

AAB AAB AAB AAB ... and BBA BBA BBA BBA ...

Find all 11101 period- n orbits and n-length symbol for $n \leq 20$ *

[^0]
Lorenz: periodic orbits

Countably infinite set of periodic orbits, ordered by length and instability

Lorenz: ensemble of periodic orbits

Periodic orbits

- unstable, countably infinite, ordered by length or instability
- dense in attracting set (\exists orbit arbitrarily close to any point on attractor)
- chaotic attractor is limit set of its unstable periodic orbits

Periodic Orbit Theory

Theoretical framework for analyzing chaotic attractors
properties of unstable orbits \Rightarrow time-avg statistics
Nonlinear ODEs induce linear PDEs on probability density functions

$$
f^{t}: x(0) \rightarrow x(t) \quad \Rightarrow \quad e^{t \mathcal{A}}: \rho(x, 0) \rightarrow \rho(x, t)
$$

Invariant measure $=$ eigenfunction ρ of $e^{t \mathcal{A}}=\sum$ nbrhds of periodic orbits of f
Expansions produce trace formulae relating time averages to sums over orbits

$$
\int_{0}^{\infty} e^{-s t} \operatorname{tr} e^{t \mathcal{A}} d t=\operatorname{tr} \frac{1}{s-\mathcal{A}}=\sum_{\text {orbits } p} T_{p} \sum_{r=1}^{\infty} \frac{e^{-s T_{p} r}}{\left|\operatorname{det}\left(I-D f_{\perp, p}^{T_{p} r}\right)\right|}
$$

Convergence is superexponential, but requires all orbits up to given period T

Numerical methods

can we do this for fluids?

Problems

- Infinite dimensionality, in practice very high-d numerics
- No symbolic dynamics to guide initial guesses for orbits
- Is Navier-Stokes regular? Hyperbolic?

On the other hand,

- Viscosity strongly contracts high-order modes
- Coherent structures suggest low-d organization
- Fast \& accurate numerical simulation methods
- Blaze ahead without theoretical justification

Plane Couette flow

Navier-Stokes, BCs

$$
\begin{aligned}
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \boldsymbol{\nabla} \mathbf{u} & =-\nabla p+\frac{1}{R e} \nabla^{2} \mathbf{u} \\
\nabla \cdot \mathbf{u} & =0 \\
\mathbf{u}\left(x+L_{x}, y, z\right) & =\mathbf{u}\left(x, y, z+L_{z}\right)=\mathbf{u}(x, y, z), \quad \mathbf{u}(x, \pm 1, z)= \pm 1
\end{aligned}
$$

Represent time evolution under Navier-Stokes as

$$
\mathbf{u}(t)=f^{t}(\mathbf{u}(0))
$$

Seek four types of invariant solutions

$$
\begin{aligned}
& f^{t}(\mathbf{u})=\mathbf{u}, \quad \forall t \\
& f^{t}(\mathbf{u})=\tau(t) \mathbf{u}, \quad \forall t \\
& f^{t}(\mathbf{u})=\mathbf{u}, \quad t=T, 2 T, 3 T, \ldots \\
& f^{t}(\mathbf{u})=\sigma \mathbf{u}, \quad t=T, 2 T, 3 T, \ldots
\end{aligned}
$$

equilibrium
traveling wave
periodic orbit
relative periodic orbit
where
$f^{t}=$ time integration of Navier-Stokes
$\sigma=$ symmetry of Navier-Stokes and BCs
$\tau(t)=$ phase shift, e.g. $\tau(t) \mathbf{u}(x, y, z)=\mathbf{u}\left(x-c_{x} t, y, z-c_{z} t\right)$
General invariance equation:

$$
g(\mathbf{u}, T, \sigma)=f^{T}(\mathbf{u})-\sigma \mathbf{u}=0
$$

Numerical formulation

- Periodic orbit satisfies

$$
g(\mathbf{u}, T)=f^{T}(\mathbf{u})-\mathbf{u}=0 \quad\left(f^{t}=\text { evolution by Navier-Stokes }\right)
$$

- Discretize u with spectral expansion

$$
\mathbf{u}(\mathbf{x}, t)=\sum_{j, k, \ell} \hat{\mathbf{u}}_{j k \ell}(t) T_{\ell}(y) e^{2 \pi i\left(j x / L_{x}+k z / L_{z}\right)}
$$

- Discretize f^{t} with semi-implicit finite-diff time stepping (DNS)
- Nonlinear eqn in $O\left(10^{5}\right)$ to $O\left(10^{6}\right)$ unknowns $\hat{\mathbf{u}}_{j k \ell}, T$
- Solve with Newton-Kylov-hookstep algorithm of Viswanath, 2007.

Computing periodic orbits: Newton method

Find periodic orbit \mathbf{u}^{*}, T^{*} solution of $g\left(\mathbf{u}^{*}, T^{*}\right)=0$

- Start with guess (\mathbf{u}, T) near solution $\left(\mathbf{u}^{*}, T^{*}\right)$

$$
\mathbf{u}^{*}=\mathbf{u}+\delta \mathbf{u}, \quad T^{*}=T+\delta T
$$

- Expand g in Taylor series

$$
\begin{aligned}
g\left(\mathbf{u}^{*}, T^{*}\right) & =g(\mathbf{u}+\delta \mathbf{u}, T+\delta T) \\
0 & =g(\mathbf{u}, T)+D g(\delta \mathbf{u}, \delta T)
\end{aligned}
$$

- Newton-step eqn

$$
D g(\delta \mathbf{u}, \delta T)=-g(\mathbf{u}, T)
$$

- Has form of $A x=b$ problem, solve for Newton step $(\delta \mathbf{u}, \delta T)$
- Let $(\mathbf{u}, T) \rightarrow(\mathbf{u}+\delta \mathbf{u}, T+\delta T)$ and iterate.

Solution of Newton-step eqn

Newton step eqn

$$
D g(\delta \mathbf{u}, \delta T)=-g(\mathbf{u}, T)
$$

Problem

$D g$ is huge: $10^{5} \times 10^{5}$ to $10^{6} \times 10^{6}$
$D g$ is not sparse
$D g$ too big to evaluate: 100 GB to 10 TB
Too big to solve directly: days to years for $O\left(\mathrm{~m}^{3}\right)$ direct algorithm

Solution

Solve with iterative Krylov-subspace method, GMRES.

Solve $m \times m$ system of eqns $A x=b$ with $m=O\left(10^{6}\right)$
Define n-dimensional Krylov subspace of \mathbb{C}^{m} for $n \ll m$

$$
\begin{aligned}
& K_{1}=\operatorname{span}\{b\} \\
& K_{2}=\operatorname{span}\{b, A b\} \\
& K_{3}=\operatorname{span}\left\{b, A b, A^{2} b\right\} \\
& K_{n}=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{n-1} b\right\}
\end{aligned}
$$

Note that $A K_{n} \subset K_{n+1}$.
Construct orthonormal basis for K_{n} via Gram-Schmidt orthogonalization

$$
\begin{aligned}
K_{1} & =\operatorname{span}\left\{q_{1}\right\} \\
K_{2} & =\operatorname{span}\left\{q_{1}, q_{2}\right\} \\
K_{3} & =\operatorname{span}\left\{q_{1}, q_{2}, q_{3}\right\} \\
K_{n} & =\operatorname{span}\left\{q_{1}, q_{2}, q_{3}, \ldots, q_{n}\right\}
\end{aligned}
$$

Then $A Q_{n}=Q_{n+1} H_{n}$ where H_{n} is $(n+1) \times n$, and Q_{n} has columns q_{1}, \ldots, q_{n}.

Given $A Q_{n}=Q_{n+1} H_{n}$ for $(n+1) \times n H_{n}$ and cols of Q_{n} span K_{n}
The following minimization problems are equivalent

$$
\begin{aligned}
& \min \left\|A x_{n}-b\right\|_{2} \text { over } x_{n} \in K_{n} \\
& \min \left\|A Q_{n} y_{n}-b\right\|_{2} \text { over } y_{n} \in \mathbb{C}^{n} \\
& \min \left\|Q_{n+1} H_{n} y_{n}-b\right\|_{2} \text { over } y_{n} \in \mathbb{C}^{n} \\
& \min \left\|H_{n} y_{n}-Q_{n+1}^{*} b\right\|_{2} \text { over } y_{n} \in \mathbb{C}^{n}
\end{aligned}
$$

Last equation is low-d least-squares problem, $(n+1) \times n$ for $n \ll m$.
Given solution y_{n}, approximate solution to $A x=b$ is $x_{n}=Q_{n} y_{n}$.
$K_{n}=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{n-1} b\right\}$ aligns with leading eigenspace of A.
Thus x_{n} converges quickly if b is dominated by leading eigenspace of A.

Computation of Newton step for periodic orbit of plane Couette flow

- $m=2 \cdot 48^{3} \approx 10^{5}$ unknowns
- periodic orbit has 3 unstable eigenvalues
- Newton step converges to 10^{-3} accuracy in $n=20$ iterations

GMRES requires computation $A x$ for test values of x, not A itself.
For Newton-step eqn, $A x$ corresponds to operator on LHS

$$
D g(\delta \mathbf{u}, \delta T)=-g(\mathbf{u}, T)
$$

Approximate LHS operation with finite-differencing

$$
D g(\delta \mathbf{u}, \delta T) \doteq g(\mathbf{u}+\delta \mathbf{u}, T+\delta T)-g(\mathbf{u}, T)
$$

Substitute $g(\mathbf{u}, T)=f^{T}(\mathbf{u})-\mathbf{u}$

$$
D g(\delta \mathbf{u}, \delta T) \doteq f^{T+\delta T}(\mathbf{u}+\delta \mathbf{u})-f^{T}(\mathbf{u})-\delta \mathbf{u}
$$

Each GMRES iteration takes one DNS time-integration $f^{T+\delta T}$.
No need to compute or store $D g$.

Hookstep trust-region modification of Newton method

Problem: Newton step goes haywire if guess is far from solution $\left(\mathbf{u}^{*}, T^{*}\right)$
Solution: Instead of taking Newton step from Newton eqn

$$
D g(\delta \mathbf{u}, \delta T)=-g(\mathbf{u}, T),
$$

minimize the residual of the Newton eqn

$$
\|D g(\delta \mathbf{u}, \delta T)+g(\mathbf{u}, T)\|_{2}
$$

with constraints $\|(\delta \mathbf{u}, \delta T)\| \leq R$ and $(\delta \mathbf{u}, \delta T)$ in Krylov subspace

- Calculable from $(n+1) \times n$ SVD of H matrix from GMRES.
- Adjust R based on accuracy of local linearization.
- For small R, hookstep = gradient descent on Newton-eqn residual.
- For large R, hookstep $=$ Newton step.

Newton-Krylov-hookstep convergence

Hookstep increases convergence region of search by orders of magnitude

- each dot is one Newton/hookstep iteration
- typical: long creep downhill (gradient) then rapid convergence (Newton)
- unusual: very good initial guess, immediate rapid convergence
- equilibria take a few CPU-hours; periodic orbits one CPU-day (minimal flows)

Get initial guesses (\mathbf{u}, T) from close recurrences $f^{T}(\mathbf{u})-\mathbf{u} \approx 0$
Compute long time series of data $\mathbf{u}(t)$ by DNS
Look for local minima of recurrence residual $\|\mathbf{u}(t+T)-\mathbf{u}(t)\|$
Circles mark guesses that converged to periodic orbits, X's mark failures.

Results

Results for plane Couette flow, minimal flow unit, $R e=400$

- $O(20)$ equilibria, $O(50)$ periodic orbits, $O(5)$ heteroclinic connections
- Well-resolved states of DNS, dense in $\hat{\mathbf{u}}_{j k l}$ on 48^{3} grid

$$
\mathbf{u}(\mathbf{x})=\sum_{j, k, \ell} \hat{\mathbf{u}}_{j k \ell} T_{\ell}(y) e^{2 \pi i\left(j x / L_{x}+k z / L_{z}\right)}
$$

- Spatial resolution $O\left(10^{-5}\right)$, temporal resolution $O\left(10^{-4}\right)$.
- Satisfy discretized invariant equation $f^{T}(\mathbf{u})-\mathbf{u}=O\left(10^{-13}\right)$.
- $O(10)$ unstable eigenvalues $\lll O\left(10^{5}\right)$ stable eigenvalues.

Well-resolved, fully nonlinear DNS computations, no modeling.

Plane Couette equilibria: Nagata, Busse, Clever, Waleffe solutions

Equilibria

EQ4, upper branch

Equilibria

EQ5, lower branch

EQ6, upper branch

Equilibria organize dynamics: state space portraits

- 10^{5}-d DNS u projected onto 3d space spanned by a few EQBs
- Dots = equilibria
- Lines = unstable manifolds, heteroclinic connections, computed with DNS

Equilibria organize dynamics: heteroclinic connections

Animations:

- $\mathrm{EQ}_{4} \rightarrow \mathrm{EQ}_{1}$ heteroclinic connection: [3d movie] [x-average movie]
- $\mathrm{EQ}_{4} \rightarrow \tau_{x z} \mathrm{EQ}_{1}$ heteroclinic connection: [3d movie] [x-average movie]
- [movie of transient turbulence]

Periodic orbits

[movie of turbulent flow]

Periodic orbits

[movie of turbulent flow]

Periodic orbits replicate statistics

Turbulent flow (lines) versus $T=121$ periodic orbit (symbols), $R e=400$ Typical orbits have mean flow to 1% and Reynolds stresses to $5-10 \%$.

Ensemble of periodic orbits versus invariant measure

10^{5}-d DNS states u projected onto principal axes of a periodic orbit.

Turbulence shadowing a periodic orbit

Spatially localized traveling waves of channel flow

TW2-1

TW2-2

- concentrated, alternating, tilted, near-wall streamwise rolls
- centered over low-speed streaks, flanked by high-speed streaks
- large streamwise velocity deficit in core, relative to laminar

Comparison to sinuous boundary-layer structures

Stretch (1990)
educed from DNS data

Schoppa \& Hussain (2002) transient growth mode

TW2-1: exact traveling wave of channel flow same orientation of swirling, wall-unit length scales

Doubly-local equilibrium of plane Couette

small nonlaminar spot decaying exponentially to laminar flow

Bibliography

PCF = plane Couette flow, PPF = plane Poiseuille or channel flow ASBL = asymptotic suction boundary layer

- Nagata 1990: equilibrium solution of PCF
- Waleffe 1995-2003: self-sustaining process, traveling waves of PPF
- Kawahara, Kida 2001: 2 periodic orbits in PCF
- Faisst, Eckhardt 2003: traveling waves in pipe flow
- van Veen, Kida, Kawhara 2006: periodic orbits of isotropic turbulence
- Viswanath 2007: Newton-Krylov-hookstep algorithm, 5 periodic orbits PCF
- Schneider, Eckhardt, and Marinc 2010: spanwise-localized PCF solutions
- Schneider, Gibson, Burke 2010: homoclinic snaking of PCF solutions
- Khapko, Kreilos, Eckhardt et al. 2013 periodic orbits of ASBL
- Willis, Cvitanovic, Avila 2013: symmetry reduction for solutions of pipe flow
- Gibson, Brand 2014, spanwise- and wall-localized traveling waves of PPF and doubly-localized equilibrium of PCF

Kawahara, Uhlman, van Veen, Annual Review Fluid Mech. 2012

Key conclusions

- Exact coherent structures = invariant solutions of Navier-Stokes.
- Computed as exact solutions of DNS.
- Replicate observed flow features: roll/streak structures, bursting, mean flow, Reynolds stresses.
- Low-d instabilities, dynamics wanders within low-d unstable manifolds.
- Observed coherent structures = close passes to exact coherent structures.
- Provides precise, model-free, low-d approach to transitional turbulence.
- High Reynolds numbers
- Multiple-scale solutions
- Extended flows, localized solutions
- Open flows, e.g. boundary layer
- Dynamical models based on low-d linearization about orbits
- Statistics via periodic orbit theory

Thanks to collaborators:
Predrag Cvitanovic, Jonathan Halcrow, Divikar Viswanath, Tobias Schneider, Evan Brand.

[^0]: * Viswanath (2008) Nonlinearity

