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Conceptual framework

low-d dynamical systems



Lorenz system
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ẋ = σ(y − x)

ẏ = ρx− y − xz

ż = −βz + xy, σ = 10, β = 8/3, ρ = 28

Equilibria at origin and

A,B = (±
√

β(ρ− 1), ±
√

β(ρ− 1), ρ− 1)
.
= (±8.48, ±8.48, 27)



Lorenz system
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Eigenvalues at A,B

λ1 = −13.8

λ2,3 = 0.094± 10.2 i



Lorenz system
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Equilibria organize the dynamics but are not part of the attractor.

The attractor is best characterized by its periodic orbits.



How to find the periodic orbits of Lorenz
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-1 ≤ η ≤ 1

Construct 1-d Poincare section on nearly 2-d surface of attractor.

Parameterize as −1 ≤ η ≤ 1.



Lorenz: Poincare map

x
-20 0 20

z

0

50

A B

-1 ≤ η ≤ 1

Flow induces map from −1 ≤ η ≤ 1 onto itself: ηn+1 = f(ηn).

Associate −1 ≤ η < 0 with A and 0 < η ≤ 1 with B.

Note discontinuity of map at η = 0.



Lorenz Poincare map, 1st iterate
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Graph of f mapping η onto itself: ηn+1 = f(ηn).

Period-1 orbit would have ηn+1 = f(ηn) = ηn.

No intersections of f(η) with identity ⇒ no period-1 orbits.



Lorenz Poincare map, 2nd iterate

f2(η) = f(f(η)) f
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periodic orbit AB

2nd iterate ηn+2 = f2(ηn) intersects identity at two points.

⇒ one period-2 orbit η = f2(η), symbol sequence AB AB AB AB . . .



Lorenz Poincare map, 3rd iterate

f3 f f

η

-1 0 1

f3
(η

)

-1

0

1

A B

A

B

η

-1 0 1

f(
η
)

-1

0

1

A B

A

B

η

-1 0 1

f(
η
)

-1

0

1

A B

A

B

orbit AAB orbit BBA

3rd iterate ηn+3 = f3(ηn) intersects identity at six points.

⇒ two period-3 orbits η = f3(η), symbol sequences

AAB AAB AAB AAB . . . and BBA BBA BBA BBA . . .

Find all 11101 period-n orbits and n-length symbol for n ≤ 20 ∗

∗

Viswanath (2008) Nonlinearity



Lorenz: periodic orbits
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Countably infinite set of periodic orbits, ordered by length and instability

Viswanath (2008) Nonlinearity



Lorenz: ensemble of periodic orbits
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Periodic orbits

• unstable, countably infinite, ordered by length or instability

• dense in attracting set (∃ orbit arbitrarily close to any point on attractor)

• chaotic attractor is limit set of its unstable periodic orbits



Periodic Orbit Theory

Theoretical framework for analyzing chaotic attractors

properties of unstable orbits ⇒ time-avg statistics

Nonlinear ODEs induce linear PDEs on probability density functions

f t : x(0) → x(t) ⇒ etA : ρ(x, 0) → ρ(x, t)

Invariant measure = eigenfunction ρ of etA =
∑

nbrhds of periodic orbits of f

Expansions produce trace formulae relating time averages to sums over orbits

∫ ∞

0

e−st tr etA dt = tr
1

s−A
=

∑

orbits p

Tp

∞
∑

r=1

e−sTpr

|det(I −Df
Tpr

⊥,p )|

Convergence is superexponential, but requires all orbits up to given period T

Ruelle, Gutzwiller, Cvitanović, . . .

www.chaosbook.org



Numerical methods

can we do this for fluids?



Issues with fluids

Problems

• Infinite dimensionality, in practice very high-d numerics

• No symbolic dynamics to guide initial guesses for orbits

• Is Navier-Stokes regular? Hyperbolic?

On the other hand,

• Viscosity strongly contracts high-order modes

• Coherent structures suggest low-d organization

• Fast & accurate numerical simulation methods

• Blaze ahead without theoretical justification



Plane Couette flow

Navier-Stokes, BCs

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∇2

u

∇ · u = 0

u(x+ Lx, y, z) = u(x, y, z + Lz) = u(x, y, z), u(x,±1, z) = ±1

Represent time evolution under Navier-Stokes as

u(t) = f t(u(0))



Problem formulation

Seek four types of invariant solutions

f t(u) = u, ∀t equilibrium

f t(u) = τ(t)u, ∀t traveling wave

f t(u) = u, t = T, 2T, 3T, ... periodic orbit

f t(u) = σu, t = T, 2T, 3T, ... relative periodic orbit

where

f t = time integration of Navier-Stokes

σ = symmetry of Navier-Stokes and BCs

τ(t) = phase shift, e.g. τ(t)u(x, y, z) = u(x− cxt, y, z − czt)

General invariance equation:

g(u, T, σ) = fT (u)− σu = 0



Numerical formulation

• Periodic orbit satisfies

g(u, T ) = fT (u)− u = 0 (f t = evolution by Navier-Stokes)

• Discretize u with spectral expansion

u(x, t) =
∑

j,k,ℓ

ûjkℓ(t) Tℓ(y) e
2πi(jx/Lx+kz/Lz)

• Discretize f t with semi-implicit finite-diff time stepping (DNS)

• Nonlinear eqn in O(105) to O(106) unknowns ûjkℓ, T

• Solve with Newton-Kylov-hookstep algorithm of Viswanath, 2007.



Computing periodic orbits: Newton method

Find periodic orbit u∗, T ∗ solution of g(u∗, T ∗) = 0

• Start with guess (u, T ) near solution (u∗, T ∗)

u
∗ = u+ δu, T ∗ = T + δT

• Expand g in Taylor series

g(u∗, T ∗) = g(u+ δu, T + δT )

0 = g(u, T ) +Dg (δu, δT )

• Newton-step eqn

Dg (δu, δT ) = −g(u, T )

• Has form of Ax = b problem, solve for Newton step (δu, δT )

• Let (u, T ) → (u+ δu, T + δT ) and iterate.



Solution of Newton-step eqn

Newton step eqn

Dg (δu, δT ) = −g(u, T )

Problem

Dg is huge: 105 × 105 to 106 × 106

Dg is not sparse

Dg too big to evaluate: 100 GB to 10 TB

Too big to solve directly: days to years for O(m3) direct algorithm

Solution

Solve with iterative Krylov-subspace method, GMRES.



GMRES algorithm (Generalized Minimum Residuals)

Solve m×m system of eqns Ax = b with m = O(106)

Define n-dimensional Krylov subspace of Cm for n ≪ m

K1 = span{b}

K2 = span{b, Ab}

K3 = span{b, Ab,A2b}

Kn = span{b, Ab,A2b, . . . , An−1b}

Note that AKn ⊂ Kn+1.

Construct orthonormal basis for Kn via Gram-Schmidt orthogonalization

K1 = span{q1}

K2 = span{q1, q2}

K3 = span{q1, q2, q3}

Kn = span{q1, q2, q3, . . . , qn}

Then AQn = Qn+1Hn where Hn is (n+ 1)× n, and Qn has columns q1, . . . , qn.



GMRES iterative solution of Ax = b

Given AQn = Qn+1Hn for (n+ 1)× n Hn and cols of Qn span Kn

The following minimization problems are equivalent

min ‖Axn − b‖2 over xn ∈ Kn

min ‖AQnyn − b‖2 over yn ∈ C
n

min ‖Qn+1Hnyn − b‖2 over yn ∈ C
n

min ‖Hnyn −Q∗
n+1b‖2 over yn ∈ C

n

Last equation is low-d least-squares problem, (n+ 1)× n for n ≪ m.

Given solution yn, approximate solution to Ax = b is xn = Qnyn.

Kn = span{b, Ab,A2b, . . . , An−1b} aligns with leading eigenspace of A.

Thus xn converges quickly if b is dominated by leading eigenspace of A.



GMRES convergence

GMRES iteration n
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Computation of Newton step for periodic orbit of plane Couette flow

• m = 2 · 483 ≈ 105 unknowns

• periodic orbit has 3 unstable eigenvalues

• Newton step converges to 10−3 accuracy in n = 20 iterations



GMRES as a “matrix-free” computation

GMRES requires computation Ax for test values of x, not A itself.

For Newton-step eqn, Ax corresponds to operator on LHS

Dg (δu, δT ) = −g(u, T )

Approximate LHS operation with finite-differencing

Dg (δu, δT )
.
= g(u+ δu, T + δT )− g(u, T )

Substitute g(u, T ) = fT (u)− u

Dg (δu, δT )
.
= fT+δT (u+ δu)− fT (u)− δu

Each GMRES iteration takes one DNS time-integration fT+δT .

No need to compute or store Dg.



Hookstep trust-region modification of Newton method

Problem: Newton step goes haywire if guess is far from solution (u∗, T ∗)

Solution: Instead of taking Newton step from Newton eqn

Dg (δu, δT ) = −g(u, T ),

minimize the residual of the Newton eqn

‖Dg (δu, δT ) + g(u, T )‖2

with constraints ‖(δu, δT )‖ ≤ R and (δu, δT ) in Krylov subspace

• Calculable from (n+ 1)× n SVD of H matrix from GMRES.

• Adjust R based on accuracy of local linearization.

• For small R, hookstep = gradient descent on Newton-eqn residual.

• For large R, hookstep = Newton step.

Viswanath (2007) JFM 580, Dennis & Schabel (1996)



Newton-Krylov-hookstep convergence

Hookstep increases convergence region of search by orders of magnitude

• each dot is one Newton/hookstep iteration

• typical: long creep downhill (gradient) then rapid convergence (Newton)

• unusual: very good initial guess, immediate rapid convergence

• equilibria take a few CPU-hours; periodic orbits one CPU-day (minimal flows)



Initial guesses for Newton-Krylov-hookstep search

r(t, T ) = ‖u(t+T )−u(t)‖

〈‖u‖2〉1/2

Get initial guesses (u, T ) from close recurrences fT (u)− u ≈ 0

Compute long time series of data u(t) by DNS

Look for local minima of recurrence residual ‖u(t+ T )− u(t)‖

Circles mark guesses that converged to periodic orbits, X’s mark failures.



Results



Results for plane Couette flow, minimal flow unit, Re = 400

• O(20) equilibria, O(50) periodic orbits, O(5) heteroclinic connections

• Well-resolved states of DNS, dense in ûjkℓ on 483 grid

u(x) =
∑

j,k,ℓ

ûjkℓ Tℓ(y) e
2πi(jx/Lx+kz/Lz)

• Spatial resolution O(10−5), temporal resolution O(10−4).

• Satisfy discretized invariant equation fT (u)− u = O(10−13).

• O(10) unstable eigenvalues ≪ O(105) stable eigenvalues.

Well-resolved, fully nonlinear DNS computations, no modeling.



Plane Couette equilibria: Nagata, Busse, Clever, Waleffe solutions

EQ1, lower branch EQ2, upper branch

1 unstable eigenvalue!

Nagata (1990) JFM 217; Clever & Busse (1997) JFM 344; Waleffe (2003) Phys. Fluids 15; Wang, Gibson, Waleffe (2007) PRL 98



Equilibria

EQ3, lower branch EQ4, upper branch



Equilibria

EQ5, lower branch EQ6, upper branch



Equilibria organize dynamics: state space portraits
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• 105-d DNS u projected onto 3d space spanned by a few EQBs

• Dots = equilibria

• Lines = unstable manifolds, heteroclinic connections, computed with DNS



Equilibria organize dynamics: heteroclinic connections

Animations:

• EQ4 → EQ1 heteroclinic connection: [3d movie] [x-average movie]

• EQ4 → τxzEQ1 heteroclinic connection: [3d movie] [x-average movie]

• [movie of transient turbulence]

Halcrow, Gibson, Cvitanović, Viswanath, (2009) JFM 621



Periodic orbits

T = 19.02 T = 68.07

[movie of turbulent flow]



Periodic orbits

T = 88.90 T = 121.4

[movie of turbulent flow]



Periodic orbits replicate statistics

mean flow Reynolds stresses

〈u+2
〉 〈u+v+〉 〈v+

2
〉 〈w+2

〉

Turbulent flow (lines) versus T = 121 periodic orbit (symbols), Re = 400

Typical orbits have mean flow to 1% and Reynolds stresses to 5-10%.



Ensemble of periodic orbits versus invariant measure

periodic orbits turbulent trajectory
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105-d DNS states u projected onto principal axes of a periodic orbit.



Turbulence shadowing a periodic orbit



Spatially localized traveling waves of channel flow

TW2-1 TW2-2

• concentrated, alternating, tilted, near-wall streamwise rolls

• centered over low-speed streaks, flanked by high-speed streaks

• large streamwise velocity deficit in core, relative to laminar



Comparison to sinuous boundary-layer structures

Stretch (1990) Schoppa & Hussain (2002)

educed from DNS data transient growth mode

TW2-1: exact traveling wave of channel flow

same orientation of swirling, wall-unit length scales



Doubly-local equilibrium of plane Couette

midplane streamwise velocity swirling strength

y-avg energy normalized y-avg (u,w) flow

small nonlaminar spot decaying exponentially to laminar flow
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Key conclusions

• Exact coherent structures = invariant solutions of Navier-Stokes.

• Computed as exact solutions of DNS.

• Replicate observed flow features: roll/streak structures, bursting, mean flow,

Reynolds stresses.

• Low-d instabilities, dynamics wanders within low-d unstable manifolds.

• Observed coherent structures = close passes to exact coherent structures.

• Provides precise, model-free, low-d approach to transitional turbulence.



Questions and directions

• High Reynolds numbers

• Multiple-scale solutions

• Extended flows, localized solutions

• Open flows, e.g. boundary layer

• Dynamical models based on low-d linearization about orbits

• Statistics via periodic orbit theory

Thanks to collaborators:

Predrag Cvitanovic, Jonathan Halcrow, Divikar Viswanath,

Tobias Schneider, Evan Brand.
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