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Orszag Patterson: DNS, HIT, 643, spectrum ...

N = O(Re
9
4 ); W = O(Re3)

W = O(Re4)

Deardorff, Channel flow; Atmospheric Boundary layer;
Smagorinsky model+mixing length; still, no log-layer...

Launder and Spalding: K − ε-model; started the field of
commercial CFD. Intellectually an extremely interesting and
important development. Led to time-dependent simulations:
VLES, PANs etc.
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Since: Mesh size: DNS: HIT: m = 40963

643 ≈ 3× 105; w ≈ 16× 106

(due to intermittency, it may be not enough for the full DNS);
Convection: Ra ≈ 1010; Channel/pipes,BL ..

DNS - a remarkably powerful scientific tool, if one asks
question first.

K − ε model (VLES) became an indispensable part of
an engineering design cycle; Total annual sale of
commercial CFD codes (structures excluded) is:

s ≈ 5× 108USD

and rapidly grows. Only 3− 5% of customers use LES.
(F. Boysan, Fluent President; H.Chen, EXA, Senior VP)
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Industry standards.
1. Accuracy on all cars: Cd : ≈ 2− 4%.
2. All tests are blind.
3. Heat transfer: Nu must be calculated with ≈ 4− 5%.
3. The model = const.
4. Tiny details of the system are important: logos,
pillars, tires....
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LES:

If size of computational mesh is ∆, filter out all
fluctuations on the scales r ≤ ∆ and compute the
remaining field. The goal was to fix ∆ and achieve
scaling of computational work

W = O(Re0)

The main question is: how do you write the
remaining equation for ”resolved” scales u< ≡ u?
According to Kolmogorov’s theory : if ∆ is in IR:

const = E = −5

4

(δ∆u)3

∆
= ν(∆)S2

ij
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Applied locally, this relation becomes

ν(∆) = |u(x+∆)−u(x)|∆ =
|u(x + ∆)− u(x)|

∆
∆2 ≈

|S |∆2

Smagorynsky model.

Dynamic, variational, constraint, models for ∆
.................
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State - of-the-art-LES. Oberai, Wanderer. DNS (2563) vs
LES (323).

sn(r) = ((u(x + r)− u(x))n
1
n

LES/((u(x + r)− u(x))n
1
n

DNS .
Root-n mean.
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In this talk I will present a mathematical tool
leading to all these models as different limiting
cases. I will be able to produce estimates of
accuracy of different models and assess their
performance on a few examples.

Let us start with the smallest scales.

∂u

∂x
= lim

∆→0

u(x + ∆i)− u(x)

∆
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δru = u(x + r)− u(x)

r ≈ L; L >> r >> η; η >> r

LSF ; IR δru ≈
∂u

∂x
r

Sn(r) = (δru)n
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Sn(r) = (δru)n = CK (EL)
n
3 ( r

L)ξn; Sn ∝ (∂u∂x )nr n

Definition of the dissipation scale ηn (n = 8). KRS
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S2n(η2n) = (
∂u

∂x
)2nη2n

2n = A2nη
ξ2n
2n

Dissipation scale is a crossover from analytic
to singular intervals of structure functions.

(
∂u

∂x
)n ∝ Reρn = (

urmsL

ν
)ρn

S2n(η2n)/η2n ≈ S2n+1(η2n+1)/ν

DISSIPATION SCALE ηn DEPENDS UPON MOMENT
ORDER n.

ηn ≈ LRe
1

ξn−ξn+1−1

For the full DNS including small-scale effects: W = O(Re4).
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Dissipation scale is a fluctuating
parameter:

Reη =
ηδηu

ν
≈ 1

PDF Q(η). Universal. (HIT, Pipes,
convection.)
FROM NS EQUATIONS:
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Moments of derivatives Exponents.

ρn = n +
ξ2n

ξ2n − ξ2n+1 − 1

dn = n +
ξ4n

ξ4n − ξ4n+1 − 1

αn = n +
ξ3n

ξn − ξ3n+1 − 1

ξn = 0.383n/(1 + n/20)
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Simulations. Velocity derivatives
J. SHUMACHER, K.R. SREENIVASAN AND VY (2007).

NUMERICS 10243; ISOTROPIC
TURBULENCE;

4 ≤ Rλ =

√
5

3

1

Eν
u2

rms ≤ 123
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Du

Dt
= −∇p + ν0∇2u + f

f = P u(k, t)∑
kf
|u(k, t)|2

δk,kkf

kf = (1, 1, 2); (1, 2, 2); E = ν(
∂ui

∂xj
)2 = P = const

Re is varied by variation of viscosity.
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∂u

∂x
≈ δηu

η
≡ u(x + η)− u(x)

η
=

(u(x + η)− u(x))2

ν
η is a displacement in analytic interval.
This establishes relations between SFs
in the IR range and derivatives.

(
∂u

∂x
)n = (

(δr u)2

ν
)2)n ∝ RenS2n(η)
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MOMENTS OF VELOCITY DERIVATIVES.
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anomalous scaling of dissipation rate. Schumacher, KRS, VY, Donzis,
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Universality; Schumacher et al. 2014

:

Figure: geometry
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Universality; Schumacher et al. 2014

:

Figure: geometry
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Universality of derivatives.( Schumacher, Sheele, Donzis,
Sreenivasan, Krasnov, VY. 2014
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TRANSITION. GAUSSIAN POINT.
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TRANSITION. GAUSSIAN POINT. 0.5 ≤ Rλ ≤ 200.
Diego Donzis. (2013).
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HIT Driven by RF. Diego Donzis.
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At Rλ < 10 the flow is a dynamical system

described by a few modes. Quasicoherent

(mixed) state.

at

Rλ ≈ 9.0 − 10.

TRANSITION WAS SMOOTH (NO
JUMPS.)
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SUMMARY: Coming from low Reynolds numbers, we
found a transition in VELOCITY DERIVATIVES: at the
GAUSSIAN transition point to FULLY DEVELOPED
TURBULENCE

R tr
λ =

√
5

3

1

νtrE
u2

rms ≈ 9.0 − 10

Please, remember this number!
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a
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Figure: PROGRAM: study variation of the Reynolds number Rλ(∆) with
the u.v. cut-off (filtering scale) ∆ in a turbulent flow with Rλ,0 ≈ 1000
and the integral scale L = 2π/Λf ≈ 10. By successive small-scale filtering
we will derive formal expressions for DNS,LES and VLES.
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At the transition point
Retr = u0/(νtr Λf ) ≈ 9− 10:

Du0

Dt
= −∇p + νtr∇2u0 + F(Λf )

ν � νtr ; u = u0 + v

Dv

Dt
= −∇p − +ν∇2v + f

f = −u0 · v − v · u0 + (ν − νtr )∇2u0
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The model.

Then:

∂v

∂t
+ v · ∇v = −∇p + ν0∇2v + f

f = −∇i (u0,iv + viu0)

v is excited by interaction with u0 and
0 < ν0 ≤ νtr .

f = 0

Random force, isotropic...
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fi (k, ω)fj(k′, ω′) = 2D0Pij(k)k−yδ(k + k′)δ(ω+ω′)

1

L
= Λf ≤ k ≤ Λ0

f (k < Λf ) = 0; F (k ≥ Λf ) = 0
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U =
√

D0/(ν0Λ2
0); X = 1/Λ0; D0 ∝ E

∂u

∂T
+λ̂0u · ∇u = −λ̂0∇p+∇2u+

f√
D0ν0Λ2

0

“bare” Reynolds number

λ̂0
2

=
D0

ν3
0Λε0

u ≡ v.
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We fix Λf = const, D0 ∝ E = P and set
ν0 → 0 so that λ̂0 →∞ and Λ0 →∞.
The model mimics velocity
fluctuations at r < L = Λf caused by
instability of the large-scale flow,
forcing, etc. The secondary effects like
eddy noise are consequences of f.
Now we derive large-scale equations at
the scales 1/Λ0 ≤ r ≤ 1/Λf
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RNG. FNS (1976), Martin, DeDomonisis (1978);
(Amplitudes): Orszag, VY. (1986); Smith, VY (1992); VY,
Speziale et al. (1992). LARGE REYNOLDS NUMBER.

Figure: Schematic representation of scale elimination procedure and
variation of dimensionless coupling constant λ̂(k). Re = Re(k).
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Eliminating modes from the interval
leads to formally exact SGM(∆):

2π/∆ = Λ−r
0 ≤ k ≤ Λ0 = 1/ηK

∂u<

∂t
+ u · ∇u< =

−∇p + (ν0 + ∆ν)∇2u<+ F + f + ∆f + HOT
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∆ν = Ad
D0

ν2
0

[
eεr − 1

εΛε0
+O(

k2

Λε+2
0

e(ε+2)r − 1

ε + 2
)+O(λ̂4

0)]

ε = 4 + y − d and
Ad = Âd

Sd
(2π)d

; Âd = 1
2

d2−d
d(d+2).

2π

η
= Λ0 → Λ(r) = Λ0e−r = 2π/∆

er − 1

Λ0
=

∆−∆0

2π
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Due to Galileo invariance, high-order
(n > 1) terms (HOT) generated by
scale-elimination are of the order:

HOT = [
∞∑

n=2

λ̂1
2n
τ n−1

0 (∂tu
< + u< · ∇)n]u< +

O(λ̂4
0∇S2

ij

1

Λ2
0

e(ε+2)r − 1

ε + 2
) + · · ·

with τ0 ≈ 1/(ν0Λ2
0) and λ̂1 = λ̂0(eεr − 1).
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Eliminating modes from the next shell
(doubling the ”filtering scale”) and
the next one → LES :

Λ−2r
0 ≤ k ≤ Λ0e−r

∂u<

∂t
+ u · ∇u< =

−∇p+(ν0+∆ν)∇2u<+F+f1+∆f1+HOT1
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”Real life charm”. Sub-grid model for
Reynolds stress as a function of ∆ up
to second order.

σ
(2)
ij = λ̂2ν(∆)Sij−λ̂4

1(∆)ν(∆)
D

Dt
[τ (∆)(Sij+Sji ]−

λ̂4
1(∆)ν(∆)β2

(∂ui

∂xj

∂uj

∂xi
+
∂ui

∂xj

∂uj

∂xi

)
+β3

∂ui

∂xj

∂uj

∂xi
]

+ burnett’s terms etc. No way one
can write down higher orders.
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Origin of Smagorinsky model. Keep
only first term:

σ1
ij ≈ ν(∆)Sij ≈

E∆4

ν3
ν(∆)Sij

ν(∆) = |u(x + ∆)− u(x)|∆ ≈ |S |∆2
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Trouble. Eliminating shells from the
interval π/∆ ≤ k ≤ Λ0 gives an
estimate:

ν(∆) =
ν(∆)S2∆4

ν(∆)2

∞∑
n=0

λ̂n(∆)αn(
ν(∆)S2∆4

ν3(∆)
)n+

∞∑
n=2

λ2n
1 (k∆)2n

In the zeroth order - Smagorinsky
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ν(∆) ≈ |S |∆2

First term gives Smagorinsky. Are
remaining ones large or small ?
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How do coefficients λi vary with ∆?

0.5 1.0 1.5 2.0

2.8

3.0

3.2

3.4

Figure: Dimensionless coupling constant λ̂(r) as a function of the
length-scale Λ(r). λ̂0 = 1000. For ∆→ 2π/Λf = L, the dimensionless
λ̂(∆)→ 2.58
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λ̂1(r) =

√
ε(e

εr
2 − 1)√

ε
λ̂2

1(0)
+ 3Ad (e

εr
2 − 1)

(1)

1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

Figure: λ̂1(r) as a function of the length-scale r grows with filtering.
HOT are not small ! (LES!!!)
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Intermediate summary:

1. SGE = NS + ν(∆) + HOT .

2. As ∆→ 0, ν(∆)→ ν0, HOT → 0.
(DNS)
3. For ∆ in IR, no small parameter.
Nothing can be neglected. (LES)
4 . The effective viscosity is recovered
at the large scales only ( k∆ << 1).
5. When ∆→ Λf , λ̂(∆)→ 2.58.
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.

Let us investigate this limit in some
details.



Universality of turbulence and engineering simulations.

Fixed- point Reynolds number. Lowest - order ε expansion.
(VY, )Orszag, VY. Smith...

2DoSd/(2π)d = 1.59E
CK ≈ 1.61

νΛf
= 0.084

K2

E
K(t) ∝ t−γ; γ ≈ 1.47

10νT Λ2
f = K = u2

rms/2

ν(Λf ) = (
3

8
Âd × 1.594)

1
3 (
E
Λ4

f

)
1
3 = 1.15(

E
Λ4

f

)
1
3

Âd =
1

2

d 2 − d − ε
d 2 + 2d

≈ 1

2

d 2 − d

d 2 + 2d
≈ 0.2
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λ̂∗ =

√
D0Sd/(2π)d

ν3
T Λ4

f

=

√
0.8× 400EνT

u2
rms√

0.8× 400× 5
3

R fp
λ

=

√
4

3Âd

= 2.58
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Thus, the coupling constant λ̂∗ = 2.58

obtained from the lowest order of the
ε-expansion:

R fp
λ ≈ 9.0

Therefore, Re fp = R tr
λ ≈ 9.0− 10.
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IF TRANSITION IS SMOOTH AT FP

Dutr

Dt
+∇p − νtr∇2utr

≈ Dufp

Dt
+∇p − ν fp∇2ufp + HOT

νtr ≈ ν fp; utr = ufp = u0

HOT = 0
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At the scales r > L = 2π/Λf the
dynamics of a turbulent flow are
described by the NS equations with
ν = ν fp. No high-order non-linearities
etc.
This is the domain of RANS or VLES
dominating engineering modeling.
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Landau theory of transition to turbulence

1. Laminar (coherent quasi-steady
flow uo.
2. Perturbation: u = uo + v1(x, t).
3. First unstable mode: v1 = A(t)f (r).

d |A|2

dt
= 2γ1|A|2 − α|A|4
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γ1 = c(Re − Retr ); α > 0

Amax ∝
√

Re − Retr
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Landau’s theory of transition to
turbulence.

u = u0 + u1 ≡ utr + u1

u0,t + u0 · ∇u0 = −∇p + ν fp∇2u0 + F

∂u1

∂t
+ u0 · ∇u1 + u1 · ∇u0 =

−∇p1 + ν fp∇2u1 + ψ + HOT
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If u1 ∝ Ae iω, then according to
Landau’s theory:
and

u1 ∝ Amax ∝
√

Re − Retr

HOT ≈ u0 · ∇u1 ≈ u2
0Λf

√
Re − Retr

This is the estimate of accuracy of VLES

(RANS) modeling.
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1. In the IR the coarse-grained (LES)
equations are strongly nonlinear and
require a lot of thinking (resumption
of the series...). LES are a bit
problematic.
2. Second problem is BC which is also
to be dealt with nonperturbatively.
One can use dynamic approach. Early
attempts (VY, Bailey, Smits, JFM).
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Engineering simulations.
1. To be useful for design the model
must be able to predict flow features
not “postdict”.
2. Therefore, the model and all
coefficients must be fixed and not vary
from flow to flow.
3. It has to be fast: a couple of days
max per calculation.
4. Universal.
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POWERFLOW.

EXA CORPORATION.

H. Chen, I. Staroselsky, R. Shock, J.
Wanderer, O. Filippova, R. Zhang, J.
Sacco.
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LBGKE Model.

∂tf + v · ∇f = −f − f eq

τ

τhit =
3

2
× 0.0845K/E → νturb =

2

3
Kτturb

τ = τ0 + Ψ(K/E , S−1,G )

τ = τ0 + 0.0845
K

E
√

1 + γη2
; η = KS/E
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η → 0; νT → 0.0845K2/E

η →∞; νT ∝
K
S
→ 0
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Reynolds stress: in the second order of
CE expansion:

σ
(2)
i ,j = νturbSij+

νturb
D

Dt
(νturbSij)−

−K
3

E2
[C1

∂ui

∂xα

∂uj

∂xα
+ C2(

∂ui

∂xα

∂uα
∂xj

+
∂uj

∂xα

∂uα
∂xj

)+

C3
∂uα
∂xi

∂uα
∂xj

] + allorders
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The BGK equation contains all
possible non-linear models.

DK
Dt

= νT S2
ij − E + 1.39∇(νT∇K)

DE
Dt

= 1.42νT S2
ij

E
K
−1.68

E2

K
+R+1.39∇(νT∇E)
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VY-Smith:

R = 2ν0
∂ui

∂xl

∂uj

∂xl
Sij ≈ −

νT S3(1− η/4.38)

1 + γη3

S → 0; R → 0

η →∞; R ∝ +E2/K
The model is fixed !!!
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Turbulent flow past 3D circular cylinder; Re = 2× 106.

C. Bartlett et al.

Figure: a. Probe layout in the flow past cylinder
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Figure: Pressure surface coefficients Cp for different resolutions. Left
Re = 105. Right: 2× 106.



Universality of turbulence and engineering simulations.

Figure: Length and energy scales in a flow. Dotted line:
E (K ) = CKE

2
3 k−

5
3 . CK ≈ 1.5− 1.8.
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Figure: Compensated energy spectra E (k)k
5
3 . Resolutions

N = D/∆ = 256; 128, red and green respectively. c. Resolution N = 64.
The large-scale spectra are independent on ∆. Fluctuations are sensitive.
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100
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0.0001 0.001 0.01 0.1 1
δx[m]

Figure: left: Second-order structure function
S2 = |u(x + δx)− u(x)|2 ∝ |δx | 23 . Inertial+analytic+energy ranges are
there. right: Third-order structure function
S3 = |u(x + δx)− u(x)|3 ∝ |δx |. Resolutions N = 256 and N = 128,
respectively. S3 is much more sensitive. At the integral scale
Sn → 2vn = const.

XXXX
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