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Motivation 

• Reynolds number dependence in wall-bounded 
turbulent flows is of significant interest 
– Prediction of frictional drag of vehicles 
– Calculation of pressure drop in piping systems 
– Modeling of turbulent flows 

• Fully-developed turbulent channel flow is the 
most studied wall-bounded flow via DNS 
– Investigating scaling is difficult due to limited Re (Ret< 2000) 

– There is a relative lack of experimental turbulence data for 
fully-developed channel flow at high Reynolds number 

 

• What is the behavior of the scaling of the mean 
and turbulence quantities as Re increases? 



Experimental Facility 
 

•  L = 3.1 m, H = 25 mm, W = 200 mm 

•  9 - static pressure taps 

•  3 - GE/Druck pressure transducers  
   (accuracy +/- 0.1% of full scale) 

 
 

 

 

Settling 

Chamber Test 

Section Reservoir 

Tank 

Contraction 

Flowmeter 

Pressure Transducers 

•  Yokogawa magnetic flowmeter 
   (accuracy +/- 0.2% of reading) 

•  Filtered, deaerated water (T +/- 0.25º C) 

•  Rem = UbH/n = 10,000 – 300,000 
   Ret = utH/n = 350 – 6100 

 
 

 

 



Fully-Developed Flow Check  
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•  Two-component, fiber optic 

 LDV 

•  Four beam arrangement with 

 beam expansion and displacer 

•  50,000 samples in coincidence 

 mode 

•  Flow seeded with 2 mm silver-
 coated glass spheres 
 

•  45 mm probe volume diameter 
 (d+ = 3.6 @ Ret = 1000; 
  d+ = 21 @ Ret = 6000) 
 

•  u’ measurements corrected for 
 velocity gradient bias according 
 to Durst et al. (1998) 
 
 

 
 

 

 



Skin-Friction Results 
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Skin-Friction Results 
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Mean Flow 
Outer Scaling 
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Mean Flow 
Log-Law Scaling 
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Mean Flow 
Log-Law Scaling 
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Mean Flow 
Log-Law Scaling 
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Reynolds Normal Stress 
Streamwise Component – Inner Scaling 
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Reynolds Normal Stress 
Streamwise Component – Outer Scaling 
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Reynolds Normal Stress 
Streamwise Component – Log Scaling? 
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Reynolds Normal Stress 
Wall-Normal Component – Inner Scaling 

 



Reynolds Normal Stress 
Wall-Normal Component – Outer Scaling 
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Reynolds Shear Stress 
Inner Scaling 

 



Reynolds Shear Stress 
Outer Scaling 
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Reynolds Shear Stress 
Correlation Coefficient 
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Conclusions 

• Skin friction follows a log-law for Rem≥ 60,000. 

• The mean flow and Reynolds shear stress show 
little, if any, Re dependence for 1000 ≤ Ret ≤ 
6000. 

• The near-wall peak in the streamwise Reynolds 
normal stress increases with Re for Ret ≤ 4000. 

• An increase in the streamwise Reynolds normal 
stress in the outer layer with Re is also observed 
for all Re tested. 

• The wall-normal Reynolds normal stress 
increases with Re for Ret ≤ 4000. 
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