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Synopsis 

!   Motivation 
!   A full-domain linear controller that relaminarises 

turbulent channel flow 

!   How does this work? 

!   Importance of pressure fluctuations – Batchelor, 
Landahl & Townsend (BLT) 

!   Comparison of timescales 

!   Measurements in a rapidly distorted boundary layer 

Reτ ≤ 400
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Linear globally 
stabilising controller 

! Navier-Stokes equations written as a 
linear system G with control K and 
nonlinear forcing, f 

!   Nonlinear term N is conservative 
w.r.t. disturbance energy 

!   Turbulent shear stresses treated as 
part of perturbations we wish to force 

!   Linear controller works in presence 
of nonlinearity by characterising it as 
positive real i.e. passive. 

!   Stability: choose K such that linear 
part of closed loop is passive 

!   The linear terms always dissipate 
disturbance energy 
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Turbulent channel flow 

!   Reτ = 80, 100, 180, 300: Domain 

!   Reτ = 400: Domain 

! Channelflow 0.9.15 (Gibson et al. ‘08) 

!   Full-domain sensing, actuation on v 

!   Control focuses on vU’ 

!   Forcing bandwidth progressively increased 

!   Details for Reτ = 180, kx, kz ≤ 9 

!   & at 

4 

4πh x 2h x 2πh

y+ = 20
init

2.5πh x 2h x πh



Reτ ≤ 180 
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Reτ ≤ 400 
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Minimum wavenumber for 
relaminarisation 
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Mean square forcing: 
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Mean velocity profile 
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Fluctuations about target laminar profile 
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Controlled u:  
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Controlled u: 

12 

t =10 

y+ = 20
init



Controlled u: 
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Controlled u: 

14 

t =100 

y+ = 20
init



Controlled v: 
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Controlled v: 
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Controlled v: 
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Controlled v: 
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Fluctuations about target laminar profile 

Reτ = 180 
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A useful theory for Inner-Outer Interaction?  
! Landahl (’93, ’90, ‘75): initial disturbance scales           with timescales: 

 shear interaction          << viscous                  << nonlinear         . 
!   Large and small-scale decomposition: 
!   Small scale,     , large scale    , where  

!   To first order in ε, large-scale and small-scale fields may be represented 
separately by the same equations: 

 

 

!   p, q nonlinear source terms (turbulent stresses) significant only in local 
regions: “intense small-scale turbulence of an intermittent nature” 
interspersed with “laminar-like unsteady motion of a larger scale”. 
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Pressure gradient fluctuations 

•  High Reynolds numbers: local isotropy and negligible 
viscous diffusion 

•  Mean-square acceleration becomes 

•  where 

•  Therefore, even the smallest scale motion is driven by 
pressure gradients and not by viscous forces. 
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Batchelor & Townsend: 
uncontrolled turbulent channel flow 
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Fluctuations about 
target laminar profile 
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Fluctuations about 
target laminar profile 
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pressure term at t = 50 (Reτ = 180 : kx, kz ≤ 9)
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Turbulent channel flow pressure statistics 

•  Spatial intermittency: 
pressure has small 
skewness, large flatness (>6) 

•  Green’s function integral 
shows that contribution to 
wall pressure comes mostly 
from near-wall velocity field 
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BLT theory 

•  Sublayer as a waveguide: primarily for p and v 
•  u and w also wave-like but including convected eddy 

behaviour 
•  Description of both large & small scales – Inner-outer 

interaction? 
•  Pressure sources can ‘trigger’ bursts near wall = short 

shear – interaction timescale 
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Viscous periods 

  secondary instability, 
nonlinear, resonance? 

       viscous waves, 
primarily in p and v? 



Rolling road to generate 
shearless boundary layer  

Stationary 
Tunnel floor 

Measurement 
Location 

Aims:   
1.  Experimental study of linear mechanisms in wall turbulence 
2.  Variable ratio of shear timescale to turbulence timescale 

Rapidly distorted boundary layer 



Conclusions 

!   Linear full-domain forcing via vU’ at low wavenumbers 
effective in attenuating turbulent channel flow 

!   Control-theoretic approach (“passivity”) explained by 
conservative nature of nonlinear terms contributing to 
Reynolds-Orr equation  

!   Control acts on v–component field and hence pressure field 
via rapid source term of Poisson equation  

!   Qualitative support for Landahl’s theory: inner-outer 
interaction effected by linear shear-interaction on short 
timescales 

!   Relevance of Landahl’s theory for linear control lies in the 
fact that, over the short time for which the controller is 
effective, the longer turbulence time scale is not significant 

!   Shear timescale effective because of pressure – linear 
source term is an RDT approximation 
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Fluctuations about target laminar profile 
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Controlled p: 
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Controlled p: 
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•  Experimental Design: 
1.  Grid-generated turbulence  
2.  Thin boundary layer on a flat surface to provide for rapid shearing 
3.  Localised roughness strip to introduce broad-band disturbance 
•  Two configurations used: 

1) 18” x 18” tunnel (without a rolling road), on an Aluminium 
plate  



Preliminary Results •  Single-wire HW measurements 
•  Spectrum calculated using Taylor’s hypothesis 

•  BL evolves gradually towards a fully developed turbulent BL 
•  Localized grit roughness enhances high wave-number content in the spectrum 

(for a given  
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Comparison between fully-developed TBL and a rapidly sheared flow 

A typical ZPG TBL  Rapidly sheared flow (X = 0.3m) 

 “synthetic” boundary layer that  
•  Approximately resembles in turbulence structure  to a typical TBL 
•  Expands the buffer layer of the TBL allowing for a closer inspection 

of structures  



“Synthetic” Boundary Layer compared to a TBL 

	  
“Synthe)c”	  Boundary	  Layer	  
	  

	  
Turbulent	  Boundary	  Layer	  

Grid-‐generated	  turbulence	  blocked	  
by	  the	  presence	  of	  wall	  

Wake	  region	  close	  to	  the	  edge	  of	  the	  
TBL	  

A	  thin	  wall	  layer	  (that	  rapidly	  shears	  
the	  free-‐stream	  turbulence	  to	  
generate	  long	  structures)	  

The	  buffer	  region	  of	  the	  TBL	  

A	  localized	  patch	  of	  roughness	  to	  
enhance	  smaller	  scales	  

High	  wavenumber	  end	  of	  the	  
turbulence	  spectrum	  



Comparison between fully-developed TBL and a rapidly sheared flow 

ZPG TBL (with freestream Tu  = 3%)  
Rapidly sheared flow (X = 0.3m) 
Freestream Tu = 2.2% 

Buffer layer 

Grid Turbulence with localized roughness 
 from wall gradient (within ±3 %) 

 from Clauser Chart 

10’ x 5’ 18” x 18” 



 ZPG TBL  Rapidly sheared flow (X = 0.3m) 

Log layer 

Comparison between fully-developed TBL and a rapidly sheared flow 

Streamwise length scales of the same order in both flows in appropriate regions 



ZPG TBL  Rapidly sheared flow (X = 0.3m) 

Outer layer 

Comparison between fully-developed TBL and a rapidly sheared flow 

Streamwise length scales of the same order in both flows in appropriate regions 



Time-scale Disparity τ = Integral time scale of Freestream Turbulence 
 = Shear interaction time scale =  

τ    

Grid Turbulence with localized roughness 

18” x 18” X=0.3 m 

Time-scale disparity suggests that the  
ideas of the Rapid Distortion Theory  
might be applicable to this “synthetic”  
flow 



Effect of upstream boundary condition (UBC) on spectra 

UBCs: Shearless Boundary Layer 
            No Wall Roughness  

UBCs: Grid turbulence 
            Localized Wall Roughness  

18” x 18” tunnel 10’ x 5’ tunnel 


