Large Reynolds number boundary layer investigation with sophisticated high resolution imaging techniques

Christian J. Kähler
Nicolas Buchmann, Sven Scharnowski, Christian Cierpka
Institute for Fluid Mechanics and Aerodynamics

High Reynolds Number Boundary Layer Turbulence
Integrating Descriptions of Statistical Structure, Scaling and Dynamical Evolution
November 20-22, 2013
University of New Hampshire

Motivation

Nature Vol. 2703 November 1977
T.D. Dudderar, P.G. Simpkins

Laser speckle

photography in a fluid medium

A TECHNIQUE for obtaining quantitative velocity data from hydrodynamic flow fields using laser speckle photography (LSP) has been developed and uses the scattered light from the interior of a suitably seeded liquid which is illuminated by a coherent beam from a pulsed ruby laser. The resulting speckle pattern can be graph of the correlated speckle patterns produced by fluid dynamic motion contains all the information necessary to describe the motion throughout a selected plane. When the speckle photographs are optically interrogated distinct fringe patterns are produced whose geometries are related to the velocity field. Here
we describe how a Poiseuille flow was used to demonstrate this we describe how a Poiscuille flow was used to demonstrate this fringe patterns illustrating the velocity distribution are given, analysed and compared with the classical theory.
The LSP technique has been used since 1969 almost exclusively for various applications to surface metrology ${ }^{1-3}$. Barker and Fourney ${ }^{4}$ have extended the method to measure displacements in
the interior of a transparent solid by recording side-scattered light from an illuminated domain. With lasers of conventional power such recordings require very long exposures. Consequently, the few applications reported so far have examined only imposed static strains. The basic difference between that work and the present application to fluids is that the latter is truly dynamic nvolving moving liquids rather than static solids.
The extension of side-scattering speckle techniques to pulsed Q-switched ruby laser and a suitably seeded medium. The experimental arrangement used to record speckle photographs of the flow field is shown in Fig. I. The bcam from a ruby laser, which

PIV

+ Non-inrusive
+ Multipoint technique
+ Fast data aquisition
+ Benefits from laser,
camera \& computer
developments!

Motivation

Major developments

2000 Meinhart et al. A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122, 285 - 289

2004 Westerweel et al. Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37, 375-384

2006 Kähler et al. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of LD micro-PIV. Exp. Fluids 41, 327-341

Resolution: $0.00071 \mathrm{~mm} \longrightarrow 0.028$ wall units!

Major developments

2000 Meinhart et al. A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122, 285 - 289

2004 Westerweel et al. Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37, 375-384

2006 Kähler et al. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of LD micro-PIV. Exp. Fluids 41, 327-341

2012 Scharnowski et al. Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp. Fluids 52, 985-1002

Major developments

2000 Meinhart et al. A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122, 285 - 289

2004 Westerweel et al. Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37, 375-384

2006 Kähler et al. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of LD micro-PIV. Exp. Fluids 41, 327-341

2012 Scharnowski et al. Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp. Fluids 52, 985-1002

2012 Kähler et al. On the resolution limit of digital Particle Image Velocimetry. Exp. Fluids 52, 1629 - 1639

2012 Kähler et al. On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641-1656

2013 Cierpka et al. Parallax correction for precise near-wall flow investigations using particle imaging. Applied Optics, Vol. 52, 2923-2931

Low speed investigations

Re in $10^{6} \mathrm{~m}^{-1}$	u_{∞} in m / s	δ_{99} in mm	u_{τ} in m / s	τ_{w} in N/m ${ }^{2}$
0.75	11.06 ± 0.02	535 ± 3	0.34 ± 0.01	0.14 ± 0.01
1.50	21.13 ± 0.03	457 ± 5	0.67 ± 0.02	0.52 ± 0.02
2.04	30.30 ± 0.05	455 ± 4	0.93 ± 0.03	1.01 ± 0.04

Conclusions

High resolution measurements of statistical quantities like average velocities, Reynolds stresses, higher order moments, pdf's are possible with PIV / PTV at low speed.
To reach large Reynolds numbers, long test sections are required.

- large scale flow structures cannot be resolves because of large $\boldsymbol{\delta}$.
- promotes uncertainties in initial (pumping,...) / boundary conditions (vibrations, ...)
- side wall and blockage effects may alter flow.

High resolution measurements on short models at high flow velocity are desired!

Transonic Windtunnel Göttingen TWG

Transonic Windtunnel Göttingen TWG

Model

Universität 遈 München

PIV configuration

$4 \times 100 \mathrm{~mm}$
dyn. pressure sensors \times

Parameter

Ma	p_{0} (kPa)	$\mathrm{Re}_{\text {tau }}$	$\mathrm{Re}_{\text {theta }}$	U_{0} $(\mathrm{~m} / \mathrm{s})$	$\mathrm{u}_{\text {tau }}$ $(\mathrm{m} / \mathrm{s})$	delta $_{\text {g9 }}$ (mm)	theta (mm)	$1 / \mathrm{y}^{+}$ $(\mu \mathrm{m})$
0.8	50	7,800	23,000	270.6	9.26	27.2	3.54	3.48
0.5	50	5,350	15,700	171.0	6.00	28.1	3.81	5.25
0.5	100	-	-	-	-	-	-	-

Fernholz and Finley

Prog. Aerospace Sci. Vol. 32, pp. 245-311, 1996

Ma	p_{0} (kPa)	$\mathrm{Re}_{\text {tau }}$	$\mathrm{Re}_{\text {theta }}$	U_{0} $(\mathrm{~m} / \mathrm{s})$	$\mathrm{u}_{\text {tau }}$ $(\mathrm{m} / \mathrm{s})$	delta $_{\text {g9 }}$ (mm)	theta (mm)	$1 / \mathrm{y}^{+}$ $(\mu \mathrm{m})$
0.8	50	7,800	23,000	270.6	9.26	27.2	3.54	3.48
0.5	50	5,350	15,700	171.0	6.00	28.1	3.81	5.25
0.5	100	-	-	-	-	-	-	-

Fernholz and Finley
Prog. Aerospace Sci. Vol. 32, pp. 245-311, 1996

Ma	p_{0} (kPa)	$\mathrm{Re}_{\text {tau }}$	$\mathrm{Re}_{\text {theta }}$	U_{0} $(\mathrm{~m} / \mathrm{s})$	$\mathrm{u}_{\text {tau }}$ $(\mathrm{m} / \mathrm{s})$	delta $_{\text {g9 }}$ (mm)	theta (mm)	$1 / \mathrm{y}^{+}$ $(\mu \mathrm{m})$
0.8	50	7,800	23,000	270.6	9.26	27.2	3.54	3.48
0.5	50	5,350	15,700	171.0	6.00	28.1	3.81	5.25
0.5	100	-	-	-	-	-	-	-

Fernholz and Finley
Prog. Aerospace Sci. Vol. 32, pp. 245-311, 1996

Ma	p_{0} (kPa)	$\mathrm{Re}_{\text {tau }}$	$\mathrm{Re}_{\text {theta }}$	U_{o} $(\mathrm{m} / \mathrm{s})$	$\mathrm{u}_{\text {tau }}$ $(\mathrm{m} / \mathrm{s})$	delta $_{\text {g9 }}$ (mm)	theta (mm)	$1 / \mathrm{y}^{+}$ $(\mu \mathrm{m})$
0.8	50	7,800	23,000	270.6	9.26	27.2	3.54	3.48
0.5	50	5,350	15,700	171.0	6.00	28.1	3.81	5.25
0.5	100	-	-	-	-	-	-	-

Two-point correlation $\mathrm{Ma}=0.02$

Kähler, The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. DLR-FB-24, 2004
http://ediss.uni-
goettingen.de/bitstream/handle/11858/00-1735-0000-0006-B4C8-8/kaehler.pdf?sequence=1

Two-point correlation $\mathrm{Ma}=0.8$

no periodicity of $R_{u u}$ in x direction
large structures are uncorrelated due to meandering

Instantaneous flow field Ma=0.8

Conclusions

Large Reynolds number investigations at high Ma are possible with sophisticate PIV / PTV recording and evaluation techniques.
> Side wall and blockage effects can be neglected.
> Uncertainties in the initial and boundary conditions can be reduced.
Investigation at $\mathrm{Ma}=0.5$ and 0.8 indicate:
> good statistical agreement with results of Fernholz and Finley in DNW.
> weak second peak is visible as expected
$>\mathrm{R}_{\mathrm{uu}}$ correlates arround 7δ in x direction
$>$ no periodicity of R_{uu} in x direction
> superstructures are uncorrelated in x
> decorrelation associated with meandering of large structures.

