What **can** polymer drag reducing flows **tell** us about the mechanisms of wall-flow transport?

C. M. White^a J. Klewicki^{a,b} Y. Dubief^c

a. Mechanical Engineering Department University of New Hampshire, Durham, NH

b. Department of Mechanical Engineering University of Melbourne

c. School of Engineering & Vermont Advanced Computing Center University of Vermont, Burlington, VT

High Reynolds Number Boundary Layer Turbulence: Integrating Descriptions of Statistical Structure, Scaling and Dynamical Evolution November 20–22, 2013, University of New Hampshire

Brief Description of Polymer Drag Reduction Research

- Phenomenon: Dissolving parts-per-million quantities of long-chain flexible polymers into solution can reduce turbulent friction losses by as much as 70% compared with that of the solvent alone.
- Researchers study polymer drag reduction for both practical and fundamental purposes.
- Recent activity has led to an improved understanding of the underlying mechanisms at work. *This has been the primary focus of most recent activity.*
- Studying the effects of polymers on the turbulence provides valuable insight into the physics of fluid turbulence, particularly the self-sustaining mechanisms of wall turbulence. *Potential opportunities will be the topic of this talk.*

Description

Wow Factor of Polymers

Underlying Mechanisms at Work^{1,2}

- i. Polymers are strongly stretched in upwash and downwash flow generated by near-wall quasi-streamwise vortices.
- ii. The strongly stretched polymers increases the local (extensional) viscosity of the fluid.
- iii. The increased viscosity creates a negative torque on the vortices.
- iv. The negative torque weakens the vortices.

Consequently, the dampening of the near-wall vortices modifies the bulk flow and underlying turbulence resulting in:

- reduced wall shear stress,
- increased mean velocity (for a given pressure gradient),
- strong attenuation of the Reynolds shear stress, and
- peak turbulent activity pushed further from the wall.

[1] Dubief et al. 2004. J. Fluid Mech. 514, 271-280. [2] Kim et al. 2007. Fluid Mech. 584, 281-299.

Mechanism

Polymers Strongly Modify the Turbulent Flow Structure³

Observations with DR

- spanwise streak spacing increases
- streamwise extent of streaks increases
- number and strength of near-wall vortices decreases

(a) and (c) Newtonian (b) and (d) Polymer DR $\approx 60\%$

[3] White & Mungal. Ann. Rev. Fluid Mech. 2008. 40:235-256.

11-22-2013 5 / 22

Mechanism

Polymers Strongly Modify the Turbulent Flow Statistics

- Left: Experimental polymer data
- Right: Numerical polymer data

Stable Transitional Flow

Can Polymer DR flow be viewed and exploited as a "stable" transitional flow to provide insight into transition and other drag reducing strategies?

Justification

- Polymer DR region lies between laminar and turbulent flow regions.
- At a given DR, the flow is statistically steady.
- DR flow statistics closely resemble transitional Newtonian flow statistics.

Polymer DR and Transitional Newtonian Mean Profiles

- Left: Experimental polymer data (see [4] White et al. 2012. Phys. Fluids. 24:021701.)
- Right: Newtonian bypass transition ([5] Wu & Moin. 2009. J. Fluid Mech. 630, 5-41.)

(ii) $u^+=2.5 \ln y^++5$, and (iii) $u^+=11.7 \ln y^+-17$

Note that (iii) is the so-called "ultimate profile" corresponding to MDR.

MDR-like flow statistics for Newtonian transition.

 u^+ =11.7 ln y^+ -17 ----- , Re_{θ} = 200 ----- , Re_{θ} = 300 ----- , and Re_{θ} = 900 ······ (fully turbulent flow)

- MDR like-profile falls between $Re_{\theta} = 200$ and $Re_{\theta} = 300$ profiles.
- Reynolds shear-stress profiles are also similar (polymer DR case not shown).
- $Re_{\theta} = 200$ and $Re_{\theta} = 300$ brackets the minimum in C_f .
- Polymer DR-like statistics occur in the non-linear development state of transition (250 ≤ Re_θ ≤ 900).

Observations and Potential Areas to Explore

• Flow statistics of polymer DR flow closely resemble flow statistics of Newtonian bypass transitional flow.

 \rightarrow Explore to gain an improved understanding of the non-linear development state of transition.

• Polymers affect the underlying turbulence (near-wall vortices and streaks) such that a "transitional" flow state is statistically stable.

 \rightarrow Explore to understand the potential stabilization of transitional flow (or conversely the destabilization).

 \rightarrow Explore to understand and improve other drag reducing strategies, in particular the Re dependence of the stabilization.

• Polymers DR flows may be more amendable than fully turbulent flows to Exact Coherent State (ECS) type analysis.

Modification of the Inertial Layer

Effect of Polymers on the Inertial Layer: Long-held view⁶ — polymers do not affect the von Kármán coefficient.

(i) $u^+=y^+,$ (ii) $u^+{=}2.5$ ln $y^+{+}5,$ and (iii) $u^+{=}11.7$ ln $y^+{-}17$

[6] Virk J. Am. Inst. Chem. Eng. 21 (4), 625656.

Primary characteristics

- At zero DR, profile goes (i) \rightarrow (ii)
- At maximum DR, the profile goes (i) \rightarrow (iii), where (iii) is the "ultimate profile".
- At intermediate DR, the profile goes (i) → (iii) → vertically shifted (ii), i.e., the log-layer is parallel to (ii) with a y-intercept that increases with increasing DR.

C. M. White et. al (UNH & UVM)

11-22-2013 11 / 22

Recent View: Polymers modify the von Kármán coefficient (at HDR) and the "ultimate profile" corresponding to MDR is not logarithmic^{4,7}

Can the fact that polymers modify the von Kármán coefficient be exploited to better understand the formation and dynamics of the inertial layer?

[4] White et al. 2012. Phys. Fluids. 24:021701. [7] Elbing et al. 2013. Phys. Fluids. 25, 085103.

C. M. White et. al (UNH & UVM)

Polymer Flows

11-22-2013 12 / 22

Modification of the Inertial Layer

One Investigative Approach: Mean Momentum (MMB) Analysis^{8,9}

- Mean momentum equation based analysis (i.e., MMB analysis) of turbulent wall flows shows that the slope and curvature of the Reynolds stress profile underlie logarithmic-like behavior of the mean velocity.
- The Reynolds stress profile is strongly modified in polymer drag reduced (DR) flow.
- It follows that the MMB analysis of polymer DR flow may reveal further insights into the formation and dynamics of the inertial layer.

[8] Wei et al. 2005. J. Fluid Mech. 522, 303. [9] Klewicki et al. 2009. J. Fluid Mech. 638, 73.

Describing the Mean Dynamics of Polymeric Turbulence

The inner-normalized RANS equation for a statistically-steady, fully developed channel flow of polymer solution is

$$0 = \underbrace{\frac{1}{\delta^+}}_{A} + \underbrace{\frac{d^2 U^+}{dy^{+2}}}_{B} - \underbrace{\frac{d\langle uv\rangle^+}{dy^+}}_{C} + \underbrace{\frac{d\langle \tau_p\rangle^+}{dy^+}}_{D}, \qquad (1)$$

where τ_p is the polymer shear stress, caused by stretching of the polymers by the flow.

MMB Analysis

The starting point of the analysis is to determine the relative magnitude of terms in Eq. 1 over $0 \le y \le \delta$.

* E > < E >

Stress Gradients (

- At DR = 0%, the peak in the viscous stress gradient and the peak in the Reynolds stress gradient occur at $y^+ \approx 7$
- With DR, the peak in the viscous stress gradient and Reynolds stress gradient move outward from the wall.
- Observe a dual role of polymer: (i) reduce the wall

shear stress (i.e., drag reduction), (ii) "relieve" the

Reynolds stress gradient of its duty in the MMB.

Four Layer Structure in Polymer DR Channel Flow

Layer Structure

- We have used C + D since they serve the same role in the MMB.
- A four-layer structure is maintained.
- Across the stress-gradient balance layer (|B| > |C + D|).

MMB Admits A Layer Hierarchy

 y^{β} is the outcome of a re-scaling that leads to a parameter-free invariant MMB equation on each layer of the hierarchy. The subscript *m* denotes a local maxima in the re-scaled Reynolds stress function.

• The width distribution of the hierarchy layers behave like

$$W(y^{+}) = \mathcal{O}\left(\frac{d\langle uv\rangle^{+}}{dy^{+}} + \frac{1}{\delta^{+}}\right)^{-1/2} = \mathcal{O}\left(\frac{d^{2}U^{+}}{dy^{+2}}\right)^{-1/2}$$
(2)

• W is an asymptotically linear function on the hierarchy

• The slope of W is related to the von Kármán "constant".

Linear Behavior of W in Polymer DR channel flow

Layer Structure

- The linear behavior of **W** suggests new self-similar hierarchies as the turbulence adjusts to the new force-like quantity in the MMB.
- However, the lack of a log layer in the mean velocity suggests that the hierarchies may not be exactly self-similar.
- Difficulty with interpretation is (a) low Re (b) decreasing Re with DR.

Physical Extent of the Hierarchy

- Hierarchy spans $(-d\langle uv^+
 angle/dy^+_{inner-peak})\lessapprox \mathbf{y}\lessapprox W_{max}$
- For Newtonian fluids, hierarchy spans $(y^+ pprox 7) \lessapprox \mathbf{y} \lessapprox (y/\delta pprox 0.5)$
- For polymer DR flows, hierarchy starts further from the wall but spans a wider range of length scale, with the range increasing for increasing DR.
- Conjecture that the motions on the modified hierarchy are still self-similar (at least at lower DR) but start at a larger size, and thus span a broader fraction of the flow.

Preliminary Results from Higher Re DR channel flow¹⁰

[10] Thais et al. 2012 J. Turbulence 13:1-26.

Concluding Observations

- Polymer drag reduced channel flow admits a four-layer structure.
- W exhibits linear behavior for polymer flow suggesting a layer hierarchy, but a change in the slope of W suggests different dynamics on the hierarchy.
- For polymer DR flows, hierarchy starts further from the wall but spans a wider range of length scale, with the range increasing for increasing DR. This modifies the inertial layer dynamics
- At some high value of DR, the self similarity of the hierarchy breaks down and the inertial layer is obliterated.

Data Sets Analyzed

Study/Symbol (channel) polymer	%DR	1. M. Escudier, F. Presti, and S. Smith, Drag duction in the turbulent pipe flow of polymers." Non-Newtonian Fluid Mech., 81, 197:213 (1999)
[†] Escudier <i>et al.</i> ¹ (•)	XG	42	
[†] Escudier <i>et al.</i> ¹ (▲)	XG	59	2. P. K. Ptasinski, F. T. M. Nieuwstadt, B. H. A.
[†] Escudier <i>et al.</i> ¹ (∎)	XG	67	 D. Brue, and M. A. Hulsen, Experiments in tubulent tipe flow with polymer additives at maximu drag reduction." Flow, Turbulence and Combustic 66, 159 182 (2001). J. M. J. Den Toonder, M. A. Hulsen, G. D. Kuiken, and F. T. M. Niewstadt, Drag reduction polymer additives in a turbulent pipe flow: numerin and laboratory experiments." J. Fluid Mech., 33 193:231 (1997) M. D. Warholic, H. Massah, and T. J. Hanrat Infuence of drag-reducing polymers on turbulent effects of reynolds number, concentration and m ing." Exp. Fluids, 27, 461:472 (1999)
Ptanski <i>et al.</i> ² (�)	PAM	63	
Ptanski <i>et al.</i> 2(★)	PAM	65	
Den Toonder <i>et al.</i> ³ ($\mathbf{\nabla}$)	PAM	24	
Warholic <i>et al.</i> ⁴ (<)	PAM	55	
[†] Dubief <i>et al.</i> ⁵ (°)	NA	0	
[†] Dubief <i>et al.</i> ⁵ (\triangle)	FENE-P	35	
[†] Dubief <i>et al.</i> ⁵ (□)	FENE-P	60	
			J 5. Y. Dubief, C. M. White, V. E. Terrapon, E. G. Shaqfeh, P. Moin, and S. K. Lele. On the column of the second secon
Study/Symbol (TBL)	polymer	%DR	ent drag-reducing turbulence-enhanching behavio
[†] Hou <i>et al.</i> ⁶ (♦)	NA	0	 of polymers in wall flows." J. Fluid Mech., 514, 2' 280 (2004). 6. Y. Hou, V. S. R. Somandepalli, and M. G. Mu gal, Streamwise development of turbulent bounda layer drag reduction with polymer injection." J. Flu
[†] Hou <i>et al.</i> ⁶ (▼)	PEO	34	
[†] Tamano <i>et al.</i> ⁷ (\Diamond)	NA	0	
[†] Tamano <i>et al.</i> ⁷ (∇)	Oldroyd-B	34	Mech., 597 (2008). 7 S. Tamano, M. Itoh, K. Hoshizaki, and
			Yokota, numerical simulation of the drag-reduci

Experimental data (closed symbols); DNS data (open symbols)

 $^\dagger\,$ data provided by authors otherwise digitally extracted

VM) Polymer Flows

turbulent boundary layer of viscoelastic fluid," Phys.

Fluids, 19, 075106 (2007).