

Measuring the joint probability density function of velocity and higher moments of the velocity fluctuations across a turbulent boundary layer

Julio Soria^{1,2} and Callum Atkinson¹

¹Laboratory for Turbulence Research in Aerospace and Combustion Department of Mechanical and Aerospace Engineering Monash University Melbourne, Australia

> ²Department of Aeronautical Engineering King Abdulaziz University Jeddah, Kingdom of Saudi Arabia

Acknowledgment

This research is support through Australian Research Council Discovery and LIEF Grants

Australian Government

Australian Research Council

Mathematical Description of 3C-3D JPDF

(Soria, J. & Willert, C. (2012) On measuring the joint probability density function of three-dimensional velocity components in turbulent flows. MST.)

joint probability density function (JPDF) of 3C velocity components in 3D and time:

$$B_{u_1 u_2 u_3}(u_{1_0}, u_{2_0}, u_{3_0}; x_1, x_2, x_3, t)$$

sufficient to describe the statistical nature of turbulent flows in full detail

$$Prob\{u_{1_0} < u_1 < u_{1_0} + du_{1_0}, u_{2_0} < u_2 < u_{2_0} + du_{2_0}, u_{3_0} < u_3 < u_3 < u_{3_0} + du_{3_0}\}(x_1, x_2, x_3, t) \\= B_{u_1 u_2 u_3}(u_{1_0}, u_{2_0}, u_{3_0}; x_1, x_2, x_3, t) du_{1_0} du_{2_0} du_{3_0}$$

all statistical moments can be computed once JPDF is known:

$$E[u_1^r u_2^n u_3^m] = \int_{-\infty}^{\infty} u_{1_0}^r u_{2_0}^n u_{3_0}^m B_{u_1 u_2 u_3}(u_{1_0}, u_{2_0}, u_{3_0}; x_1, x_2, x_3, t) du_{1_0} du_{2_0} du_{3_0}$$

Mathematical Description of 3C-3D JPDF

(Soria, J. & Willert, C. (2012) On measuring the joint probability density function of three-dimensional velocity components in turbulent flows. MST.)

joint probability density function (JPDF) of 3C velocity components in 3D and time:

$$B_{u_1 u_2 u_3}(u_{1_0}, u_{2_0}, u_{3_0}; x_1, x_2, x_3, t)$$

sufficient to describe the statistical nature of turbulent flows in full detail

$$Prob\{u_{1_0} < u_1 < u_{1_0} + du_{1_0}, u_{2_0} < u_2 < u_{2_0} + du_{2_0}, u_{3_0} < u_3 < u_3 < u_{3_0} + du_{3_0}\}(x_1, x_2, x_3, t) \\= B_{u_1 u_2 u_3}(u_{1_0}, u_{2_0}, u_{3_0}; x_1, x_2, x_3, t) du_{1_0} du_{2_0} du_{3_0}$$

shorthand notation used for the statistically stationary JPDF of the 3D velocity components:

$$p_{\Delta \mathbf{x}} (\Delta \mathbf{x}; \mathbf{x}) = B_{\Delta x_1 \Delta x_2 \Delta x_3} (\Delta x_{1_0}, \Delta x_{2_0}, \Delta x_{3_0}; x_1, x_2, x_3)$$

where $\Delta \mathbf{x} = \Delta \mathbf{u} \Delta t$

Mathematical Formulation of 3C-3D JPDF

 3C-3D Cross-correlation Function of Single Exposed Interrogation Volume Pairs Containing N Tracer Particles (Soria, J. (2006) Lecture Notes on Turbulence and Coherent Structures in Fluids, Plasmas and Nonlinear Media. pp 309–348, World Scientific.)

$$R(\eta) = \sum_{i=1}^{N} R_{ii} \left(\eta - \Delta \mathbf{x}_i \right) + \sum_{\substack{i=1, j=1 \ i \neq j}}^{N} R_{ij} \left(\eta - \left(\mathbf{x}_j - \mathbf{x}_i + \Delta \mathbf{x}_j \right) \right)$$

where

$$R_{ii}(\eta) \equiv \mathcal{F}^{-1}[G_{ii}(\mathbf{f})] = \int_{\Omega_{\mathbf{x}_l}} I_i(\mathbf{x}, t) I_i(\mathbf{x} + \eta, t + \Delta t) \, d\mathbf{x}$$
$$R_{ij}(\eta) \equiv \mathcal{F}^{-1}[G_{ij}(\mathbf{f})] = \int_{\Omega_{\mathbf{x}_l}} I_i(\mathbf{x}, t) I_j(\mathbf{x} + \eta, t + \Delta t) \, d\mathbf{x}$$
$$G_{ij}(\mathbf{f}) = \mathcal{F}[I_i(\mathbf{x}, t)] \ \mathcal{F}[I_j(\mathbf{x} + \eta, t + \Delta t)]^*$$

Mathematical Formulation of 3C-3D JPDF

 3C-3D Cross-correlation Function of Single Exposed Interrogation Volume (IV) Pairs Containing N Tracer Particles

(Soria, J. (2006) Lecture Notes on Turbulence and Coherent Structures in Fluids,

Plasmas and Nonlinear Media. 309–348. World Scientific.)

-0.4

$$R(\eta) = \sum_{i=1}^{N} R_{ii} \left(\eta - \Delta \mathbf{x}_i \right) + \sum_{\substack{i=1, j=1 \\ i \neq j}}^{N} R_{ij} \left(\eta - \left(\mathbf{x}_j - \mathbf{x}_i + \Delta \mathbf{x}_j \right) \right)$$

Mathematical Formulation of 3C-3D JPDF: From the Ensemble Average Cross-correlation Function to the Joint Probability Density Function

- assume that there is only one tracer particle within the interrogation volume
 - represents one sample of instantaneous velocity plus noise within the measurement volume
 - the 3D cross-correlation function is directly deduced to be:

uniform PDF of the

random variable describing the

Mathematical Formulation of 3C-3D JPDF: From the Ensemble Average Cross-correlation Function to the Joint Probability Density Function

the ensemble averaged cross-correlation (EACC) function measured from *M* statistically independent samples is given by:

$$E[R(\eta)] = \lim_{M \to \infty} \frac{\sum_{k=1}^{M} (R(\eta))_k}{M}$$

$$= \int_{\Omega_{\Delta \mathbf{x}_i}} \left[\int_{\Omega_{\mathbf{x}_l}} R_{ii} (\eta - \Delta \mathbf{x}_i) p_{\mathbf{x}_l} (\mathbf{x}_i) d\mathbf{x}_i \right] p_{\Delta \mathbf{x}_i} (\Delta \mathbf{x}_i) d\Delta \mathbf{x}_i$$

Mathematical Formulation of 3C-3D JPDF: From the Ensemble Average Cross-correlation Function to the Joint Probability Density Function

this yields:

$$E[R(\eta)] = \int_{\Omega_{\Delta \mathbf{x}_i}} R_{ii} (\eta - \Delta \mathbf{x}_i) \ p_{\Delta \mathbf{x}_i} (\Delta \mathbf{x}_i) \ d\Delta \mathbf{x}_i.$$

 it can be shown via the convolution theorem that the 3C-3D JPDF is given as:

Demonstration of Performance - 3C-3D JPDF

- Numerical simulations using 3D Gaussian velocity JPDF data with
 - Monte Carlo simulations with:
 - mean velocity components: (m_u, m_v, m_w) ,
 - standard deviations: $(\sigma_u, \sigma_v, \sigma_w)$ and
 - correlation coefficients: $\rho_{uv} \equiv \sigma_{uv}/(\sigma_u \sigma_v)$, $\rho_{uw} \equiv \sigma_{uw}/(\sigma_u \sigma_w)$ and

$$\rho_{VW} \equiv \sigma_{VW} / (\sigma_V \sigma_W)$$

Gaussian particle intensity representing particles with diameter, d_i :

$$I_i(x, y, z) = I_{0_i} e^{\left[-\frac{18(x^2 + y^2 + z^2)}{d_i^2}\right]}$$

- 10⁶ 3D particle volume samples are generated with:
 - $I_{0i} = I_0 = 1$ same peak intensity for all particles
 - $all d_i = d = 1, 2, 4, 6$
 - particle location within interrogation volume is given using a uniform 3D PDF

Demonstration of Performance - 3C-3D JPDF

without correction for particle size:

$$p_{\mathbf{\Delta x_i}}(\eta) = E\left[R(\eta)\right]$$

d	m_{u}	m_{v}	m_w	σ_u	σ_v	σ_w	$ ho_{uv}$	$ ho_{uw}$	$ ho_{vw}$
(input)	1.0	2.0	-3.0	3.0	1.5	1.0	0.5	0.1	-0.8
1.0	1.002	2.000	-3.001	3.020	1.541	1.064	0.4817	0.0944	-0.7310
2.0	1.002	2.000	-3.002	3.020	1.541	1.064	0.4817	0.0944	-0.7310
4.0	0.999	1.998	-3.003	3.141	1.768	1.371	0.4041	0.0699	-0.4944
6.0	0.998	1.997	-3.004	3.312	2.056	1.727	0.3295	0.0526	-0.3375

Demonstration of Performance - 3C-3D JPDF

with correction for particle size:

$$p_{\mathbf{\Delta x}_{i}}(\eta) = \mathcal{F}^{-1} \left[\frac{\mathcal{F}\left[E\left[R\left(\eta \right) \right] \right]}{\mathcal{F}\left[R_{\mathrm{ii}}\left(\eta \right) \right]} \right]$$

d	m_{u}	m_v	m_w	σ_u	σ_v	σ_w	$ ho_{uv}$	$ ho_{uw}$	$ ho_{vw}$
(input)	1.0	2.0	-3.0	3.0	1.5	1.0	0.5	0.1	-0.8
1.0	1.006	2.001	-3.000	3.010	1.505	1.013	0.4941	0.1029	-0.7834
2.0	1.002	2.000	-3.002	3.008	1.517	1.028	0.4914	0.0980	-0.7684
4.0	0.999	1.998	-3.003	2.998	1.499	0.999	0.4996	0.1005	-0.8000
6.0	0.998	1.997	-3.004	2.998	1.499	0.999	0.4997	0.1006	-0.8006

(Collaborators: N.Buchmann, C. Atkinson, C.M. de Silva, E.P. Gnanamanickam, N. Hutchins, I. Marusic)

- experiments were undertaken in the high Reynolds number turbulent boundary layer wind tunnel at the Melbourne University
- measurements were taken at three different free-stream velocities
 de Silva et al. (2013) Nested multi-resolution PIV measurements of wall

Iniversity

(Collaborators: N.Buchmann, C. Atkinson, C.M. de Silva, E.P. Gnanamanickam, N. Hutchins, I. Marusic)

- PIV system consisting of an array of nine high resolution (4008 x 2672 px²) cameras
 ~ total of 96 Mpx was used
- two dual cavity 400 mJ Nd:YAG lasers were used in order to use different interframe timing for the far field and the near wall cameras

(Collaborators: N.Buchmann, C. Atkinson, C.M. de Silva, E.P. Gnanamanickam, N. Hutchins, I. Marusic)

 Multi-resolution approach was used with the 9 cameras to capture a streamwise domain > 2δ and simultaneous resolve the near wall region

x(m)

(Collaborators: N.Buchmann, C. Atkinson, C.M. de Silva, E.P. Gnanamanickam, N. Hutchins, I. Marusic)

Remarks ...

- the velocity JPDF is directly related via a simple relationship to the expected single-particle cross-correlation which takes into account finite particle size
- for small particles, d < 2 px, the approximation that the JPDF is equal to the expected single-particle cross-correlation yields accurate results up to second moments</p>
- Itechnique has been applied to ZPG TBL at Re⁷ = 8,000 to measure 2C-2D JPDF
- velocity dynamic range is a problem?
 ⇒ need to increase spatial dynamic range for a given fixed

IV?

