

Numerical studies on high-order derivative moments in turbulent shear flows and convective turbulence

Jörg Schumacher

Institute of Thermodynamics and Fluid Mechanics, TU Ilmenau, Germany

Boundary layer structure in Rayleigh-Bénard convection with R. du Puits, R. Kaiser, C. Resagk, A. Thess (TU Ilmenau)

Large-scale order in fully developed convective turbulence with J.D. Scheel (Occidental College, Los Angeles), M.S. Emran (TU Ilmenau)

Universality of velocity gradient statistics with J.D. Scheel, V. Yakhot (Boston University), K.R. Sreenivasan (New York University)

How is heat and momentum transported?

Chillà & Schumacher, Eur. J. Phys. (2012)

Boundary layer analysis

Li, Shi, du Puits, Resagk, Schumacher & Thess, Phys. Rev. E (2012); Shi, Emran & Schumacher, J. Fluid Mech. (2012)

Velocity and temperature profiles deviate significantly from Prandtl-Blasius-Pohlhausen solution which enters mean field theory of turbulent transport

2d PIV study of boundary layer dynamics

 $Ra = 10^{10}$ Pr = 0.7

du Puits, Willert, Resagk & Thess, submitted (2013)

Numerical solution of Boussinesq equations

Verzicco & Orlandi, J. Comp. Phys. 1996; Fischer, J. Comp. Phys. 1997

2nd-order finite difference method in cylindrical coordinates

Poisson solver with Fishpack 3rd order RK scheme MPI/OpenMP hybrid version

Spectral element method Nek5000

Poisson solver with AMG preconditioner Lagrangian interpolation polynomials BDF2 scheme pure MPI version Strong scaling tests on up to 131072 cores

Ra=10¹⁰: 32768 BGQ cores, 2.37 million elements, polynomial order N=11

Large-scale organization

Busse, Surv. Geophysics (2003); Bailon-Cuba et al., J. Fluid Mech. (2010)

Large-scale organization

Busse, Surv. Geophysics (2003); Bailon-Cuba et al., J. Fluid Mech. (2010)

Strong plume events affect bulk statistics

... a slightly different focus

Turbulence = High spatial intermittency of velocity gradients at small scales

Scaling exponents for velocity derivatives

Yakhot, Physica D 2006

$$\eta_{2n} = L \operatorname{Re}^{\frac{1}{\zeta_{2n} - \zeta_{2n-1} - 1}}$$

$$\zeta_{2n} = \frac{2n}{3} \rightarrow \eta_{2n} = L \operatorname{Re}^{\frac{3}{4}} = \eta_{K}$$

$$n \rightarrow \infty : \eta_{2n} \rightarrow L \operatorname{Re}^{-1} = \eta_{min}$$

$$\left\langle \left(\frac{\partial u_x}{\partial x}\right)^n \right\rangle \approx \left\langle \left(\frac{\delta_{\eta} u_x}{\eta}\right)^n \right\rangle \stackrel{\nu \approx \eta \, \delta_{\eta} u_x}{\underbrace{\downarrow}} = \frac{\langle (\delta_{\eta} u_x)^{2n} \rangle}{\nu^n} \approx \frac{S_{2n}(\eta_{2n})}{\nu^n}$$

$$\sim \operatorname{Re}^n \eta_{2n}^{\zeta_{2n}} \sim \operatorname{Re}^{n + \frac{\zeta_{2n}}{\zeta_{2n} - \zeta_{2n+1} - 1}}$$

$$\left\langle \epsilon^n \right\rangle \sim \operatorname{Re}^{n + \frac{\zeta_{4n}}{\zeta_{4n} - \zeta_{4n+1} - 1}}$$

Differences to the refined similarity hypothesis (K62)

Three turbulent flows

Homogeneous isotropic box turbulence

Turbulent shear flow turbulence

Turbulent Rayleigh-Bénard convection

Periodic boundaries in all three spatial directions	Walls in vertical directions and periodic otherwise	Closed cell with walls
Three homogeneous directions	Two homogeneous directions	One homogeneous direction
$u_i(\vec{x}, t) = v_i(\vec{x}, t)$	$u_i(\vec{x}, t) = \overline{u}_x(z)\delta_{xi} + v_i(\vec{x}, t)$	$u_i(\vec{x}, t) = \overline{u}_i(\vec{x}) + v_i(\vec{x}, t)$

Large-scale flow and Re-Ra scaling

Normalized moments of energy dissipation rate

Gaussian velocity gradients in DNS

Schumacher, Sreenivasan & Yakhot, New J. Phys. 2007

Transition point at Re≈100 can be predicted by renormalization group theory

Transition to intermittency

Summary

- Boundary layer dynamics is affected by a large-scale circulation with an increasingly intermittent space-time dynamics for growing Rayleigh number
- Large-scale circulation in turbulent convection is organized in patterns which are similar to the onset of convection
- Transition from Gaussian to intermittent non-Gaussian gradient statistics proceeds at about the same Reynolds number in different turbulent flows
- Universal fluctuations of the velocity gradients for Reynolds numbers above the transition point

Research Centre Jülich HIL07

Deutsche Forschungsgemeinschaft DFG

Research Unit 1182