The Myth of Laboratory Two-Dimensional Wall-Bounded Turbulent Flows

Ricardo Vinuesa¹

Advisor: Hassan M. Nagib¹ Co-Advisors: Philipp Schlatter² and Paul F. Fischer³

¹Illinois Institute of Technology (IIT), USA. ²Royal Institute of Technology (KTH), Sweden. ³Argonne National Laboratory (ANL), USA.

Figure 6. Variation of experimental mean-velocity profiles with Reynolds number in inner and outer scalings. Only profiles that meet the Π and H criteria are shown. Profiles with increasing *Re* are shown in progressively darker shades of gray. Also shown is the composite velocity profile for $\delta^+ = 1000$, 3000, 8000 and 20 000. \cdots \cdots evolution of $2\Pi/\kappa$ relative to the log-law.

FIG. 1. (Color) Comparison of fitted composite profile with channel flow data in inner scaling. (a) U^+ vs y^+ . Note the upward shift in profiles by five units with increasing Reynolds numbers. (b) $-u'v'^+$ vs y^+ . Symbols indicate the following: (gray \bigcirc) Jiménez *et al.* (Ref. 21), Re_{τ}=2003; (red \square) Niederschulte *et al.* (Ref. 12), Re_{τ}=921; (blue \triangle) Wei and Willmarth (Ref. 11), Re_{τ}=706; and (green \bigtriangledown) Kim *et al.* (Ref. 18), Re_{τ}=395. Solid line represents the fitted composite profile.

FIG. 2. (Color) Comparison of fitted composite profile with pipe flow data in inner scaling. (a) U^+ vs y^+ . Note the upward shift in profiles by five units with increasing Reynolds numbers. (b) $-u'v'^+$ vs y^+ . Symbols indicate the following: (red \Box) Perry *et al.* (Ref. 8), Re_{τ}=3408; (gray \bigcirc) Wu and Moin (Ref. 17), Re_{τ}=1141; (blue \triangle) den Toonder and Nieuwstadt (Ref. 10), Re_{τ}=690; and (green \triangleright) Eggels *et al.* (Ref. 15), Re_{τ}=180. Solid line represents the fitted composite profile.

Phys. Fluids 20, 101518 (2008)

101518-4 H. M. Nagib and K. A. Chauhan

Asymptotic value of κ for channel flows

- It is not possible to obtain the asymptotic κ for channel flows by analyzing the velocity profiles: the overlap region is not large enough to isolate the inner-outer interaction.
- The overlap region can be described in inner and outer variables:

$$\left. \begin{array}{l} U^+ = \frac{1}{\kappa} \ln(y^+) + B \\ U^+ - U_c^+ = \frac{1}{\kappa} \ln(y/h) + A \end{array} \right\} \Rightarrow U_c^+ = \frac{1}{\kappa} \ln(Re_\tau) + C$$

- This skin friction relation combines the inner and outer descriptions of the overlap region ⇒ It is possible to obtain the asymptotic κ, even if the "high-Re" conditions have not been achieved.
- No velocity profiles are used in this analysis: only the centerline velocity (U_c), and the length scales from the inner (ν/u_τ) and outer (h) regions are required.

Asymptotic value of κ for channel flows

Approach used by Monkewitz *et al.* (2008) for ZPF boundary layers ⇒ Red line is a power law prediction, but experimental data show κ = 0.384 from Re_τ ≃ 200.

Aspect ratio configurations

- Four access ports were used for velocity and wall shear measurements in a selection of aspect ratio cases ranging from 12.8 to 48.
- Different channel heights H lead to various normalized distances from entrance x/H:

Plug location	AR = 12.8, 14.4 & 19.2	AR = 18 & 24	AR = 24 - 3	AR = 24 - 2 & 32	AR = 48
1.52 m	96	120	135	160	240
2.12 m	134	167	188	223	334
2.74 m	173	216	243	288	432
3.35 m	211	264	297	352	528
3.66 m	231	288	324	384	576

Measurement techniques III

- Static pressure measurements: A total of 37 static pressure ports were used to measure the pressure drop along the channel with respect to the reference static pressure from the Pitot tube.
- A Setra 2204 differential pressure transducer is connected to a Scanivalve and the reference port. Each port is read for 20 s at a sampling rate of 1000 Hz for ΔP .
- Streamwise pressure drop at centerline is widely used to estimate wall shear ⇒ Not a local measure of *τ*_w !!

$$\tau_{\rm w,PG} = -\frac{H}{2}\frac{dP}{dx}.$$

No spanwise variation of ΔP was observed ⇒ Signature of three-dimensional effects not reflected in static pressure.

Wall shear measurements

- Local measurements of skin friction coefficient C_{f,c} = 2(u_τ/U_c)² with OFI for x/H > 200 reveal a decreasing wall shear trend up to AR = 24.
- Measurements of C_{f,c} obtained from streamwise pressure gradient do not show the same trend, and only match OFI at the lowest aspect ratio.

Wall shear measurements

- Local measurements of skin friction coefficient $C_{f,c} = 2(u_{\tau}/U_c)^2$ with OFI for x/H > 200 reveal a **decreasing wall shear** trend up to **AR** = 24.
- Measurements of C_{f,c} obtained from streamwise pressure gradient do not show the same trend, and only match OFI at the lowest aspect ratio.

High-*Re* von Kármán coefficient κ

 Local measurements of wall shear on a high-AR (≥ 24) fully-developed (x ≥ 200H) turbulent duct flow can be used to obtain the high-Re von Kármán coefficient κ ⇒ 1/κ ln(Re_τ) + C:

Comparison with other data available in the literature

- DNSs of z-periodic channels yield a κ value of 0.39 \Rightarrow not same flow.
- Zanoun *et al.* (2003) performed OFI measurements in an AR =12 duct at $x/H = 115 \Rightarrow$ Different κ when looking at low-*Re*, high-*Re* or all data combined.

Aim of the computations

- Conditions given by z-periodic channel flow DNSs cannot be reproduced experimentally => What are the physical mechanisms present in a duct and not captured by the channel?
- Three-dimensional effects present in the duct:
 - i) **Side-wall boundary layers**: They accelerate the irrotational core of the duct, **increasing** wall shear.
 - \Rightarrow Energy flux from side-walls to duct centerplane.
 - Secondary motions of Prandtl's second kind: They convect mean velocity from the walls to the corner bisectors, thus reducing wall shear.
 - \Rightarrow Energy flux from duct centerplane to side-walls.

Secondary motions

- Secondary motions refer to the **mean cross-stream flow** *V*, *W*, normal to the streamwise direction *x*.
- Prandtl's first kind are associated with vortex stretching and tilting terms.
 Not present in fully-developed ducts.
- Prandtl's second kind are associated with the secondary shear stress \overline{vw} and the anisotropy of the cross-stream stress $\overline{v^2} \overline{w^2}$.

Numerical code: Nek5000

- Developed by Fischer et al. at Argonne National Laboratory (ANL) in 2008.
- Based on Spectral Element Method (SEM) by Patera (1984).
- Navier-Stokes cast in weak form, and discretized in space through Galerkin approximation.
- Nonlinear terms are treated explicitly (EXT3), and viscous terms implicitly (BDF3).
- $\mathbb{P}_N \mathbb{P}_{N-2}$ formulation for velocity and pressure.
- Three-dimensional velocity vector is interpolated within a spectral element by means of three Lagrange polynomials of order *N*.
- Gauss-Lobatto-Legendre (GLL) quadrature points within a spectral element and Modified Gauss-Lobatto-Chebyshev distribution of elements.

Characteristics of the simulations I

- **Computations** carried out at three supercomputing facilities:
 - i) Cray XE6 machine Lindgren at the PDC center from KTH, Stockholm.
 - ii) Blue Gene/P machine Intrepid at the ALCF from Argonne National Lab.
 - iii) Cray XT5 machine **Louhi** at the CSCIT center for Science in Espoo, Finland.
- High-order interpolation (N = 11) within spectral elements.
- Box length L_x = 25h in all cases:

AR	$\textbf{Re}_{\tau,\textbf{c}}$	\mathbf{Re}_{b}	$\pmb{Re}_{\pmb{b},\pmb{c}}$	Grid-points	$\mathrm{ETT}^*_{\mathcal{S}}$	ETT^*_A	ε
1	178	2500	2796	28 million	30	1602	$1.08 imes 10^{-3}$
3	178	2581	2786	62 million	58	460	$2.95 imes10^{-4}$
5	176	2592	2775	96 million	28	280	$3.46 imes10^{-4}$
7	174	2575	2737	130 million	28	155	$1.28 imes10^{-3}$
10	-	-	-	185 million	-	-	-
1	323	5086	5604	145 million	26.5	112	$8.87 imes10^{-4}$
3	—	-	-	370 million	—	_	_

Characteristics of the simulations II

- Nek5000 Highly accurate, scales up to **10⁶** cores.
- Part of the data processing and preliminary LES simulations performed at Dell computational cluster Andrea at IIT, Chicago, USA.
- Mesh resolution:
 - i) Homogeneous *x* direction: $\Delta x_{\text{max}}^+ < 10$.
 - ii) Core of inhomogeneous y and z directions: $\Delta y_{\text{max}}^+ < 5$.
 - iii) Near-wall region: \simeq 7 points below 1⁺.
- *Re_b* is adjusted iteratively to keep **Re_{b,c} fixed** with AR.
 ⇒ Emulate experiment and compare with reference *z*-periodic channel.
- Preliminary low-resolution runs with N = 5 and N = 7 to approach fully-developed turbulence.

Numerical tripping

• Tripping is implemented as a random wall-normal volume force. Spanwise line with fixed amplitude, spanwise length scale and temporal frequency.

Numerical tripping

• Tripping is implemented as a random **wall-normal** volume force. Spanwise **line** with fixed **amplitude**, **spanwise length scale** and **temporal frequency**.

Figure 3. Cross-flow velocity magnitude $\sqrt{V^2 + W^2}$ (top) and contours of the streamfunction (bottom) for the AR = 3 duct case computed at $Re_{\tau,c} \simeq 180$ (left) and the AR = 1 duct case with $Re_{\tau,c} \simeq 330$. Solid white lines represent the upper and lower boundary layer thicknesses at z = 0, $\delta_y \simeq h$. Dashed white lines show the side-wall boundary layer thicknesses at y = 0, $\delta_z \simeq 2.85h$ (left) and $\delta_z \simeq h$ (right).

Comparison with OFI measurements

- Evolution of wall shear with aspect ratio is different for low-ARs:
 - i) $AR = 1 \Rightarrow 3$: Skin friction **increases**.

ii) $AR = 3 \Rightarrow 5 \Rightarrow 7$: Skin friction decreases.

 Evolution of skin friction with AR in the low-AR range can be explained in terms of side-wall boundary layers and secondary motions.

 Evolution of skin friction with AR in the low-AR range can be explained in terms of side-wall boundary layers and secondary motions.

 Evolution of skin friction with AR in the low-AR range can be explained in terms of side-wall boundary layers and secondary motions.

• Evolution of skin friction with AR in the low-AR range can be explained in terms of **side-wall boundary layers** and **secondary motions**.

Cross-flow velocity magnitude. $Re_{\tau,c} = 178, Re_{b,c} = 2786$

Cross-flow velocity magnitude. $Re_{\tau,c} = 178, Re_{b,c} = 2786$

Figure 6. Variation of experimental mean-velocity profiles with Reynolds number in inner and outer scalings. Only profiles that meet the Π and H criteria are shown. Profiles with increasing *Re* are shown in progressively darker shades of gray. Also shown is the composite velocity profile for $\delta^+ = 1000, 3000, 8000$ and $20\,000. \cdots$ evolution of $2\Pi/\kappa$ relative to the log-law.

Figure 4.3. Comparison of velocity defect profiles in outer scaling (using the Clauser boundary layer thickness $\Delta = U_{\infty}^{+}\delta^{*}$) for ZPG TBL measurements by Kulandaivelu [43] and Nagib *et al.* [44].

Figure 4.4. Equivalent TBL aspect ratio from runs by Kulandaivelu [43] and Nagib et al. [44]. Linear fit to cases showing good agreement in Figure 4.3 also presented.

Aspect ratio 5, $Re_{\tau,c} = 176$

• Comparison of duct spanwise profiles, duct centerplane and turbulent channel by Moser *et al.* at $Re_b \simeq 2800$.

Aspect ratio 1, $Re_{\tau,c} = 178$

Aspect ratio 5, $Re_{\tau,c} = 176$

Aspect ratio 7, $Re_{\tau,c} = 174$

Channel flow, $Re_{\tau,c} = 180$

Coherent structures

• Coherent vortices are longer in turbulent ducts flows than in channels:

Conclusions

- For the experimental conditions studied here, duct flow depends on the aspect ratio up to about 24, and only becomes truly fully-developed for x/H larger than 200. Both are nearly double what we previously believed. For high Reynolds numbers, smaller values of x/H around 120 may be adequate.
- The streamwise pressure gradient does not accurately represent the skin friction along the centerline, and the spanwise pressure gradient cannot detect the three-dimensional secondary flows along the side walls. Therefore, only in **pipe flow** we can depend on axial pressure gradient for experimental determination of skin friction.
- Best κ values: for ZPG boundary layer it is 0.38, for high-AR duct flow it is 0.35 and for pipe flow it is 0.39-0.4 (Superpipe Pitot data corrected for turbulence intensity) ⇒ κ not constant.
- Aspect ratio dependence of wall shear explained through DNSs of turbulent duct flows for various aspect ratios and Reynolds numbers.
- WALL-BOUNDED TURBULENCE RESEARCH SHOULD BE FOCUSED ON THE PIPE FLOW. ⇒ CICLOPE and NEW DNS CODES.

Since Ricardo finished PhD we are computing AR = 18 at Re_tau ~ 550 to match experiments

Ricardo Vinuesa (IIT)