Modeling and Simulation in Rotationally Constrained (Convective) Flows

Keith Julien¹

Ian Grooms^{4,1}, Antonio Rubio¹, Geoff Vasil³, Baylor Fox-Kemper⁶, Edgar Knobloch², Jeff Weiss¹, Michael Calkins¹, Philippe Marti¹, Jon Aurnou⁵

¹ Department of Applied Mathematics, University of Colorado Boulder
² Department of Physics, University of California Berkeley
³ Department of Mathematics, Sydney
⁴ Courant Institute of Mathematical Sciences, New York University
⁵ Earth Sciences, UCLA
⁶ Geological Sciences, Brown University

Support: NSF FRG DMS NSF EAR CSEDI

Outline

- Motivation
- Slow Manifold Equations: Nonhydrostatic QG limit
- Application Simulations

Rotationally Constrained Convective Flows in GAFD $Ro \ll 1$

 $Ro \sim 0.1 - 0.4$ $U \sim 0.05 \ m/s$ Preconditioning $\Omega \sim 7 \times 10^{-5} rad/s$ ~100 Km patch $L \sim 2km$ Deep Convection

Marshall and Schott: OPEN-OCEAN CONVECTION • 5

Lateral exchange & spreading

$$Ro = \frac{t_{\Omega}}{t_{adv}} = \frac{U}{2\Omega L}$$

large-scale flow generation on Giant Planets

 $Ro \sim 10^{-2}$ $U \sim 100 m/s$ $\Omega \sim 2 \times 10^{-4} \ rad/s$ $L \sim 15 \ Mm$

turbulence primary driver for geomagnetic field

 $Ro \sim 10^{-7}$ $U \sim 3 \times 10^{-4} m/s$ $\Omega \sim 7 \times 10^{-5} rad/s$ $L \sim 2260 km$

Rotationally Constrained Convective Flows in GAFD $Ro \ll 1$

Lateral exchange & spreading

$$Ro = \frac{t_{\Omega}}{t_{adv}} = \frac{U}{2\Omega L}$$

large-scale flow generation on Giant Planets

 $Ro \sim 10^{-2}$ $Re \sim 10^{16}$ $Ek \sim 10^{-18}$

turbulence primary driver for geomagnetic field

 $Ro \sim 10^{-7}$ $Re \sim 10^{8}$ $Ek \sim 10^{-15}$

Nonhydrostatic Investigations: Canonical Configurations Maxworthy & Narimosa JPO 1994

- Non-hydrostatic, rotationally constrained flows characterized by columnar structures
- probing low Ro, high Re challenging
 - experimentation: restricted by mechanical and fluid properties
 - DNS: restricted by spatiotemporal resolution constraints.

Liu & Ecke PRE '09; King et al Nature '09 Sakai, JFM 1997: RaE^{4/3} = 36, Ro \approx 0.1, σ = 7

Aurnou, RaE^{4/3} = 755, Ro \approx 0.13, σ = 7

nonhomog. heat source

Axial vorticity, E~2e-7 (Kageyama et al Nature 2008) Ra=1.5e10

Taylor columns

Plumes

Navier-Stokes Equations (Non-dimensional Characterization)

• Generic non-dimensionalization: $L, U, \Delta T, P$

$$D_{t}\boldsymbol{u} + Ro^{-1}\widehat{\boldsymbol{z}} \times \boldsymbol{u} = -Eu\nabla p + \Gamma b\widehat{\boldsymbol{z}} + Re^{-1}\nabla^{2}\boldsymbol{u} + \boldsymbol{S}$$
$$D_{t}b - \Gamma^{-1}Fr^{-2}w\partial_{z}\rho(z) = Pe^{-1}\nabla^{2}b$$
$$\nabla \cdot \boldsymbol{u} = 0$$

where $D_t := \partial_t + u \cdot \nabla$ with (u, p, b) for velocity, pressure & buoyancy fields.

• Non-dimensional Parameters:

Rossby Number $Ro = \frac{U}{2\Omega L}$ Ekman Number $Ek = \frac{Ro}{Re} = \frac{\nu}{2\Omega L^2}$ Euler Number $Eu = \frac{P}{\rho_0 U^2}$ Reynolds Number $Re = \frac{UL}{\nu}$ Buoyancy Number $\Gamma = \frac{g\alpha\Delta TL}{U^2}$ Péclet Number $Pe = \frac{UL}{\kappa}$ Froude Number $Fr = \frac{U}{NL}$ Péclet Number $Pe = \frac{UL}{\kappa}$

Navier-Stokes Equations (Incompressible Fluid)

• Generic non-dimensionalization: $L, U, \Delta T, P$

$$D_t \boldsymbol{u} + Ro^{-1} \widehat{\boldsymbol{z}} \times \boldsymbol{u} = -Eu\nabla p + \Gamma b\widehat{\boldsymbol{z}} + Re^{-1}\nabla^2 \boldsymbol{u} + \boldsymbol{S}$$
$$D_t b - \Gamma^{-1} Fr^{-2} w \partial_z \rho(z) = Pe^{-1}\nabla^2 b$$
$$\nabla \cdot \boldsymbol{u} = 0$$

where $D_t := \partial_t + u \cdot \nabla$ with (u, p, b) for velocity, pressure & buoyancy fields.

• Turbulence Challenge: d.o.f. (grid-pts/modes) $\Rightarrow N^3 \sim Re^{rac{9}{4}}$ (Pope, 2000)

Navier-Stokes Equations (Incompressible Fluid)

• Generic non-dimensionalization: $L, U, \Delta T, P$

$$D_{t}\boldsymbol{u} + Ro^{-1}\widehat{\boldsymbol{z}} \times \boldsymbol{u} = -Eu\nabla p + \Gamma b\widehat{\boldsymbol{z}} + Re^{-1}\nabla^{2}\boldsymbol{u} + \boldsymbol{S}$$
$$D_{t}b - \Gamma^{-1}Fr^{-2}w\partial_{z}\rho(z) = Pe^{-1}\nabla^{2}b$$
$$\nabla \cdot \boldsymbol{u} = 0$$

where $D_t := \partial_t + u \cdot \nabla$ with (u, p, b) for velocity, pressure & buoyancy fields.

• Turbulence Challenge: d.o.f. (grid-pts/modes) $\Rightarrow N^3 \sim Re^{rac{9}{4}}$ (Pope, 2000)

$$(10^{6+})^3 \sim (10^{8+})^{\frac{9}{4}} \Rightarrow \text{GAFD}$$

 $(10^3)^3 \sim (10^4)^{\frac{9}{4}} \Rightarrow \text{DNS}$

 $\mathcal{T} \sim 2Re^3/P_{flop \ rate}$ $30d \sim 2(10^8)^3/10^{23} \Rightarrow \mathsf{GAFD}$ $\mathsf{Moore's \ Law} \Rightarrow 70 \ \mathrm{yrs \ away}$

Navier-Stokes Equations: Rotationally Constrained Flows, $Ro \ll 1$

• For $Ro \ll 1$ turbulence challenge compounded

$$\underbrace{D_t \boldsymbol{u} + Ro^{-1} \hat{\boldsymbol{z}} \times \boldsymbol{u} = -Eu\nabla p}_{D_t b - \Gamma^{-1} F r^{-2} w \partial_z \rho(z) = Pe^{-1} \nabla^2 \boldsymbol{u}}_{\nabla \cdot \boldsymbol{u} = 0}$$

• NSE a stiff PDE, \exists fast inertial waves & slow geostrophically balanced eddies

Fast Inertial Waves

$$\omega_{fast} \sim Ro^{-1} \frac{k_z}{\sqrt{k_\perp^2 + k_z^2}}$$

of secondary importance

Geostrophic Eddies/Slow Waves

$$\omega_{slow} \sim \mathcal{O}(1)$$
$$Ro^{-1}\widehat{\boldsymbol{z}} \times \boldsymbol{u} \approx -Eu\nabla p, \quad \nabla \cdot \boldsymbol{u} = 0 \Rightarrow$$
$$\widehat{\boldsymbol{z}} \cdot \nabla(\boldsymbol{u}, p) \approx 0$$

Proudman-Taylor Thm (1916,1923)

Low Rossby Number Challenge

Fast waves + geostrophically balanced eddies limit DNS/Lab investigations
 Resolution: Quasi-Geostrophic Theory. Restrict dynamics to geostrophic manifold and identify Reduced (Nonhydrostatic) PDE's!

Reduced QG Equations: Perturbation Theory

- Select aspect ratio of interest, set distinguished limits
- Perform asymptotic expansion in Rossby number, Ro <<1

$$u = u_0 + Ro u_1 + Ro^2 u_2 + \cdots$$

 $v = v_0 + Ro v_1 + Ro^2 v_2 + \cdots$

• Projection to slow manifold J. et al JFM 06, J. & Knobloch JMP 07, Calkins et al JFM 13

• Solve sequence of LPDE's with secularity conditions

•

Rotationally constrained flows and aspect ratio

• Unified QG approach:

pointwise geostrophy: $Ro^{-1}\widehat{\boldsymbol{z}} \times \boldsymbol{u}_{\perp} = -Eu \nabla_{\perp} p$

inc. vortex stretching:	U^*	U^*	$2\Omega W^*$
	\overline{L}	\overline{L}	\sim H

vert. velocity scaling:

 $w_0 = \mathcal{O}(ARo)$

Rotationally constrained flows and aspect ratio

• Unified QG approach: $\partial_z \to A^{-1}\partial_z$, w = ARoW $\widehat{z} \times u_{\perp} = -\nabla_{\perp}p$, $p = \psi$ $D_t^{\perp} \nabla_{\perp}^2 \psi - \partial_z W = Re^{-1} \nabla_A^2 \nabla_{\perp}^2 \psi$ $(ARo)^2 D_t^{\perp} W = (-\partial_z \psi + b) + (ARo)^2 Re^{-1} \nabla_A^2 W$ $D_t^{\perp} b - W \partial_z \rho(z) = Pe^{-1} \nabla_A^2 b$

• Unified distinguished limits: $Eu = Ro^{-1}$, $\Gamma = (ARo)^{-1}$, Fr = ARo

$$D_t^{\perp}b - W\partial_z \rho(z) = Pe^{-1}\nabla_A^2 b$$

• Unified distinguished limits: $Eu = Ro^{-1}$, $\Gamma = (ARo)^{-1}$, Fr = ARo

• Unified distinguished limits: $Eu = Ro^{-1}$, $\Gamma = (ARo)^{-1}$, Fr = ARo

Application to Thermal Convection

upright turbulent

tilted f-plane, columnar

penetrative

Plane layer convection:

J., Knobloch PoF 99, JMP '07 Sprague et al JFM 06, J. et al JFM 06 Groom et al PRL '10, J. et al GAFD 12, J. et al PRL 12

Planetary scale convection:

thermal Rossby waves

Calkins et al JFM 13

QuasiGeostrophic Rayleigh-Bénard Convection

$$\partial_t \zeta + J \left[\psi, \zeta \right] - \partial_Z w = \nabla_\perp^2 \zeta$$
$$\partial_t w + J \left[\psi, w \right] + \partial_Z \psi = \nabla_\perp^2 w + \frac{RaE^{4/3}}{\sigma} \theta$$
$$\partial_t \theta + J \left[\psi, \theta \right] + w \partial_Z \overline{T} = \frac{1}{\sigma} \nabla_\perp^2 \theta$$
$$\partial_Z \overline{w\theta} = \frac{1}{\sigma} \partial_{ZZ} \overline{T}$$

Four Flow Regimes as Ra \uparrow : laminar to turbulent

 $RaE^{4/3} = 10, \sigma = 15$ J., Knobloch PoF 99, JMP '07

 $RaE^{4/3} = 40, \sigma = 1$

 $\mathbf{\Omega}$

g

Cells \rightarrow CTC's via TBL instability & synchronization of TBL's

CTC's: Shielded vortical columns with zero circulation

Plumes regime occurs when TBL are unable to synchronize

Ultimate Regime Geostrophic Turbulence (Julien et al GAFD 2012)

QuasiGeostrophic Rayleigh-Bénard Convection

 $\mathbf{\Omega}$

g

Geostrophic Rayleigh-Bénard Convection

Turbulent Inverse Cascade (J. et al GAFD '12, Rubio et al 2014)

Positive feedback loop

- GT provides the nonlinear forcing that generates BV's
- BV organizes GT thru advection and stretching
- BV produces large scale forcing to sustain itself

J. et al GAFD '12; Rubio, J., Weiss submitted '13

Depth averaged vorticity

Energy spectra consistent with 2D barotropic and 3D baroclinic dynamics

Heat Transport by GT Convection
$$Nu - 1 = \frac{1}{25}\sigma^{-\frac{1}{2}} \left(RaE^{\frac{4}{3}}\right)^{\frac{3}{2}}$$

Thermal throttling: region that controls the efficiency of heat transport in the fluid layer. TBL ? or Interior? turbulent interior $\beta \Rightarrow$ dissipationless scaling law (Kraichnan '63, Howard '63) TBL $\beta \Rightarrow$ marginally stably BL's (Malkus '63) $\beta_{tbl} = 3$ rotating

Outlook for 3D NH-QG

Thank you

- Reduced PDE's well suited to NHQG dynamics, computationally less challenging.
- Incompressible/Anelastic aDNS ("a"symptotic)
 - Investigate route to turbulence
 - Mean flow generation: inverse turbulent cascade?
 - Efficiency of heat transport: turbulent scaling laws
- ? Multiscale modeling: Coupling to balanced large-scale dynamics

Grooms, Fox-Kemper & J DAO '11

Planetary convection: deep spherical shells

Julien et al GAFD '12 Julien et al PRL '12

