How Linear is Wall-Bounded Turbulence?

Javier Jiménez School of Aeronautics, Madrid

Structures

STREAKS

Buffer Layer

Logarithmic Layer

VORTICES

A. Lozano-Duran (2013)

Structures

STREAKS

Buffer Layer

Logarithmic Layer

EDDIES (-uv)

Mean+Perturbations= Linear?

ONLY FOR:

Su_λ²/ε >>1

$$\lambda >> y/3$$

Linear Turbulence

Free shear Flows

K-H Unstable

Wall-bounded Flows

Stable

Linearised Squire Eq. Lift-up

$$\left(D_t - \mu \nabla^2\right) \omega_y = \left(-U' \partial_z v\right)$$

"transient, viscous"

Linearised Orr-Sommerfeld Kelvin-Helmholtz

$$\left(D_t - \mu \nabla^2 \right) \nabla^2 v = U'' \partial_x v$$

$$D_t = \partial_t + U(y) \partial_x$$

Linearised Orr-Sommerfeld Kelvin-Helmholtz

$$\left(D_t - \mu \nabla^2 \right) \nabla^2 v = U'' \partial_x v$$

$$D_t = \partial_t + U(y) \partial_x$$

Linearised Orr-Sommerfeld Orr

$$(D_t - \nu V^2) \nabla^2 v = U'' \partial_x v$$

$$D_t = \partial_t + U(y) \partial_x$$

Linearised Orr-Sommerfeld Orr

$$(D_t - \mu \nabla^2)(\nabla^2 v) = U'' \partial_x v$$
$$D_t = \partial_t + U(y) \partial_x$$

"transient, inviscid"

Wall Turbulence "Bursts"

"Minimal" Box, h+=1900; y/h=0.25

Wall Turbulence "Bursts"

"Minimal" Box, h+=1900; y/h=0.25

The Bursting Time History

The Bursting Time Scale

Summary

A Word for my Sponsored

Meet them in person at Pittsburgh

A. Lozano-Durán, O. Flores

Then, vote for the most beautiful at:

http://turbulentbeautycontest.appspot.com/ or from http://torroja.dmt.upm.es/