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Duality between fluctuations and mean velocities 

Near wall region Log-law region Wake region 

Hultmark, Vallikivi, Bailey and Smits (PRL) 2012 
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Mean flow overlap argument 
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(log-law in the overlap region) 
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𝑦+ Bailey et al. (2013) 



Two problems with the classical scaling 

• Only strictly valid at infinite Reynolds numbers. 
• For mean velocities only, cannot explain the duality 

observed between the mean velocity and the 
fluctuations. 
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• Wosnik et al. (2000) extended it to finite Reynolds numbers by allowing the 
functions to vary with Reynolds number. 

   by introducing an intermediate variable 𝑦� = 𝑦+𝑅+−𝑛 
   and by differentiating with respect to  𝑅+ while  
   keeping 𝑦� constant (following George & Castillo 1997), 
   they found that: 
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• If there exists a region in space where 𝑆𝑚 = 0, the mean velocities will exhibit a 
the logarithmic law. Also note that 𝑆𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 would result in a logarithm. 
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• If 𝑆𝑚 = 0 then we recover the logarithmic law. 
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Two problems with the classical scaling 

• Only strictly valid at infinite Reynolds numbers. 
• Does only work for the mean velocity, cannot explain 

the duality observed between the mean velocity and 
the fluctuations. 

• The as good as perfect match between 
the logarithmic layer in the fluctuations 
and the mean suggests that there might  
be a matching theory. 

• Problem: No obvious offset in the  
variances (centerline velocity for the  
mean velocities, (𝑈∞ − 𝑈)/𝑢𝜏) 

• There will always be a Reynolds number  
trend in the fluctuations. 

 𝑦+ 

𝑢2+ 



Reynolds number dependence in the fluctuations 

𝑢2+ = 𝑔𝑖(𝑦+,𝑅+) 

𝑢2+ = 𝑔𝑜 𝑦�,𝑅+  

Can extend the approach by Wosnik et al. (2000) 
 
 
 
  
introducing an intermediate variable 𝑦� = 𝑦+𝑅+−𝑛 and 
by differentiating with respect to  𝑅+ while keeping 𝑦� 
constant, we find. 
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If 𝑆𝑓 is constant anywhere in space we can expect the 
profile to be logarithmic in the same region. And the 
slope of the logarithm will be −𝑆𝑓. 
 
 𝑢2+ = 𝐵0 − 𝑆𝑓log(𝑦� + 𝑏+) 
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Hultmark (JFM) 2012 



Sensitivity functions for the mean and the 
fluctuations 

𝑆𝑓 = −
𝜕𝑔𝑖 𝑦+,𝑅+

𝜕 log 𝑅+
�
𝑦+
−
𝜕𝑔𝑜 𝑦�,𝑅+

𝜕 log 𝑅+
�
𝑦�

 

 

𝑆𝑚 =
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𝑆𝑓 = 1.27 ± 0.4 

𝑆𝑚 = 0.01 ± 0.3 Can expect:   
 

𝑢2+ = 𝐵1 − 1.27log 𝑦� + 𝑏�  
 

and 

𝑈+ =
1
𝜅 log 𝑦+ + 𝑐+ + 𝐵 

  
  

Evaluate the sensitivity  functions by 
interpolating the data at 𝑅𝑒𝜏 =
98,000 and 𝑅𝑒𝜏 = 37,000 to match 
𝑦+ and 𝑦� of 𝑅𝑒𝜏 = 68,000 and 
evaluate the gradients in Reynolds 
number. 

𝑦+ ≈ 300 𝑦� ≈ 0.12 
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New sensors made it possible  
(together with a very special facility) 

• The NSTAP is more than one order of 
magnitude smaller than regular hot wires 
(improved spatial resolution) 

• Improved temporal resolution ~150kHz 
• Well resolved turbulence measurements  

up to 𝑹𝒆𝝉 = 𝟏𝟏𝟏,𝟏𝟏𝟏.  

Zagarola and Smits (1997) 

Superpipe Nano-Scale Thermal Anemometer Probe (NSTAP) 
Bailey et al. (2010), Vallikivi et al. (2011) , Vallikivi and Smits (under review) 



Similar scaling for passive scalars?  
What is needed for a detailed investigation? 



Scaling of passive scalar in wall bounded turbulence 
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Scalar flux 

• Scalar flux: contribution of turbulence in the transport of the scalar 
• Mean quantities alone are not enough to understand scalar transport in turbulent 

flows 
• Knowledge about the scalar flux is needed 



 

 

 

 

 

 

 

 

 

 

 

 

 

Two new facilities for temperature investigations 
Channel flow 
• Height  
• Aspect ratio 12 
• Unheated section: 5 meters ~80h 
• Heated section: 4.75 meters ~75h 
 

  
 

 
 

  
 

 
 
 

 

h = 2δ = 6.35cm



 

 

 

 

 

 

 

 

 

 

 

 

 

Two new facilities for temperature investigations 
Water channel 
• 0.25 x 0.15 x 1 m test section 
• Up to 13 m/s 
• 30 kW of cooling power installed 
• 42 kW of heating built into the wall of the test section for a developing thermal 

and velocity boundary layer 
• De-ionizer 
 

  
 

 
 

  
 

 
 
 



Evaluating of cold-wires 

Heat transfer 

Heat 
accumulated 
in stubs 

Heat 
accumulated in 
wire 

Heat accumulated 
in prongs 

Heat conducted 
from prongs to 
holder 

Conduction between 
elements 

Wire filament 

Prongs 
Stubs 

Holder 

Arwatz et al. (MST) 2013 



Design of true fast response temperature sensor 
• Long and thin wire filament 
• High conductivity prongs  
• Thicker and shorter prongs 

  

 

Wire filament
 l = 300µm
 d = 200ηm   

 

Gold prongs
 lp =1mm
 d p =1mm

• Two metal construction 
 platinum wire and gold stubs 
• 200 x 0.1 x 1 µ𝑚  



Fabrication process 



Measurement techniques – avoiding attenuation and 
resolving dissipative scales 

• Temperature fluctuations measured with  
• T-NSTAP (100 nm thickness) 
• 1 μm wire (l/d=200) 

• T-NSTAP has improved temporal and 
spatial resolution 

1E-07

1E-05

1E-03

1E-01

1E+01

1E-01 1E+01 1E+03 1E+05

Φ
(f

) 

f [Hz] 

1E-03

1E-02

1E-01

1E+00

1E+00 1E+02 1E+04

Φ
1μ

/Φ
N

ST
AP

 

f [Hz] 

T-NSTAP 

1 μm wire 



Conclusions 

• A new theory for the streamwise turbulent fluctuations in fully 
developed pipe flow was introduced. 

• The slope of the logarithm of the variances relate to the 
derivative in Reynolds number. 

• To investigate  similar behavior for scalar fields two new facilities 
have been commissioned. 

• A new fast response cold-wire is developed and tested 
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