Spatially localized solutions of plane Poiseuille and plane Couette flow

John F. Gibson Evan Brand

Integrated Applied Mathematics Program University of New Hampshire

High Reynolds Number Boundary Layer Turbulence Workshop 20 November 2012

Motivation

Many invariant solutions of Navier-Stokes computed 1990-present

- equilibria, traveling waves, periodic orbits, hetero & homoclinic orbits
- precise solutions of direct numerical simulations
- robust, efficient search algorithms & clever initial guesses

Physical features

- pipes, plane Couette, channel flows
- fully 3D & nonlinear, large range *Re*, only a few unstable modes
- replicate large-scale flow structures, statistics, bursts

Dynamical systems theory motivation

- invariant solutions organize state-space dynamics
- low-d instabilities produce low-d attracting set
- turbulent dynamics = chaotic walk among low-d unstable solutions

Solutions enable precise nonlinear dynamical analysis of turbulence

Example: plane Couette flow, minimal flow unit, Re = 400

state-space portrait

periodic orbit, 10 unstable eigenvalues

In this example, invariant solutions

- capture roll-streak structure, bursting, self-sustaining process
- low-d instabilities produce low-d attracting set
- turbulent dynamics = chaotic walk among low-d unstable solutions

Motivation

But low-Re minimal flow unit plane Couette is highly constrained.

- small periodic domains
- single flow structure spans entire domain
- "turbulent" flow is simple and repetitive

Goals of present work are to find

- **spatially localized** invariant solutions of extended flows
 - span and streamwise localization
 - concentration near walls
- invariant solutions corresponding to **boundary layer** structures

Related work: spatially localized ...

- EQBs and TWs of plane Couette, Schneider et al. JFM 2010, PRL 2010
- edge state of developing boundary layer, Duguet et al. PRL 2012
- periodic orbits of asymp. suction boundary layer, Eckhardt talk, Friday

Boundary layer structures

Features to replicate

- tilted rolls over low-speed streaks, flanked by high-speed streaks
- coherence is spatially localized, concentrated near walls
- streamwise sinuous and spanwise mirror symmetry

Exact localized traveling waves of channel flow

Gibson & Brand arXiv:1304.6323v1, submitted to JFM

Exact traveling waves of channel flow: spatially periodic

Visualization

- blue/green: ∴ / ≥ signed swirling strength isosurfaces
- red: high-speed streamwise streak (low-speed streaks between)
- dashed/solid contours: -/+ streamwise velocity, relative to laminar

Exact traveling waves of channel flow: spatially localized

Features

- concentrated, alternating, tilted, near-wall streamwise rolls
- centered over low-speed streaks, flanked by high-speed streaks
- large streamwise velocity deficit in core, relative to laminar

Computed from periodic TW2 solution by

- applying tanh-based windowing function to TW2 in different phases
- refining windowed initial guess with Newtown-Krylov-hookstep

TW2-1, TW2-2: cross-stream velocity slices

TW2-1, TW2-2: streamwise-averaged velocity

dashed/solid contours: -/+ streamwise velocity relative to laminar

- localized counter-rotating mean vortices
- high/low-speed streaks via lift-up
- large velocity deficit region in core

TW2-1, TW2-2: critical layers

dotted: total streamwise velocity thick: critical layer $\langle u_{tot} \rangle_x(y, z) = c_x$ colored: magnitude of fundamental streamwise Fourier mode

TW2-1: comparison to sinuous boundary-layer structures

Stretch (1990) educed from DNS data

Schoppa & Hussain (2002) transient growth mode

TW2-1: exact traveling wave same orientation of swirling, wall-unit length scales

Doubly-local equilibrium of plane Couette flow

Brand & Gibson, in preparation

Doubly-local equilibrium of PCF: global flow

small nonlaminar spot decaying exponentially to laminar flow

Doubly-local equilibrium of PCF: detail

isolated pair of symmetrically-opposed lambda vortices

blue/green: O / O signed swirling strength

Doubly-local equilibrium of PCF: cross-stream slices

arrows: cross-stream (v,w) flow, color: streamwise u (red/blue = +/-)

Conclusions

- exact invariant solutions exist for flows beyond confined domains
- spanwise localized, near-wall traveling waves of plane Poiseuille
- doubly-localized equilibrium of plane Couette
- analysis of exponential decay rates of tails (in papers)
- suggestive similarity of TW2-1 to boundary-layer structure

Stretch (1990) educed from DNS data

Schoppa & Hussain (2002) transient growth mode

TW2-1 exact traveling wave

Questions

- Is there hope for understanding turbulence in extended flows as sets of dynamically coupled structures?
- What's the significance of embedding a localized structure in a background of laminar flow, versus a background of turbulent flow?
- What are theoretical limitations of computing invariant solutions, as spatial structure and dynamic complexity increase with *Re*?

Acknowledgments

- Greg Chini (University of New Hampshire)
- Bruno Eckhardt (Philipps-Universität Marburg)
- Tobias Schneider (Max Planck Institut Göttingen)

Please send me your talks!

johnfgibson@gmail.com

or

via USB stick