### Turbulent/non-turbulent interface in boundary layers: scaling and organisation

### Kapil Chauhan

(Rio Baidya, Krishna Talluru, Charitha de Silva, Jimmy Philip & Ivan Marusic)

Department of Mechanical Engineering The University of Melbourne, Australia

Workshop on high Reynolds number boundary layer turbulence November 20-22, University of New Hampshire, USA

#### Introduction

Lee, J. H., Kwon, Y. S., Monty, J. & Hutchins, N. 2012 Tow-tank investigation of the developing zero-pressure-gradient turbulent boundary layer. *Bull. Amer. Phys. Soc.* **57** (17), DFD.R20.8

Visualisation of a boundary layer developing over a flat plate in the tow-tank facility at UoM.



Time-lapse video of smoke over Sydney. Smoke emerging from bushfires in Blue mountains, NSW (October 2013).

 $Re_{\tau} \approx 0 - 1000, \, \delta = O(10 \text{cm})$ 

$$Re_{ au}pprox 10^{6}$$
,  $\delta=O(100{
m m})$ 

### Outline

## 1. Global characteristics

- External intermittency (turbulent/non-turbulent interface)
- Statistical features
- Organisation

### 2. Local characteristics of superlayer

- Scaling of superlayer width and the jump magnitude
- Implications for the outer flow

### 1.1 Experiments: hot-wire database

| $U_{\infty}$ | δ    | $u_{\tau}$   | T,    | $T_s U_\infty / \delta$ | Fs     | $\mathrm{d}x^+$ | $Re_{\tau}$             |                                                          |
|--------------|------|--------------|-------|-------------------------|--------|-----------------|-------------------------|----------------------------------------------------------|
| $(m s^{-1})$ | (m)  | $(m s^{-1})$ | (sec) | ,                       | (kHz)  |                 | $(\delta u_{\tau}/\nu)$ | 0 5000 10000 15000 20000 25000                           |
| 10           | 0.05 | 0.39         | 160   | 32307                   | 50.00  | 5.37            | 1330                    |                                                          |
| 10           | 0.05 | 0.39         | 160   | 29298                   | 50.00  | 5.20            | 1421                    | ▽ - Kulandaivelu, V. & Marusic, I. 2010 Evolution        |
| 10           | 0.06 | 0.39         | 160   | 28037                   | 50.00  | 5.21            | 1487                    | of zero pressure gradient turbulent boundary layers      |
| 10           | 0.06 | 0.39         | 160   | 25749                   | 50.00  | 5.23            | 1626                    | In proceedings of $17^{th}$ Australasian Eluid Machanics |
| 10           | 0.07 | 0.39         | 160   | 24159                   | 50.00  | 5.21            | 1725                    |                                                          |
| 10           | 0.07 | 0.38         | 160   | 22452                   | 50.00  | 5.10            | 1817                    | Conference. 5-9 December, Auckland, New Zealand          |
| 10           | 0.08 | 0.38         | 160   | 20856                   | 50.00  | 5.09            | 1951                    |                                                          |
| 12           | 0.11 | 0.44         | 120   | 13373                   | 24.07  | 14.26           | 3080                    |                                                          |
| 12           | 0.16 | 0.43         | 180   | 13757                   | 24.07  | 13.74           | 4327                    | ♦ - Hutchins, IN., Nickels, T. B., Marusic, I. & Chong,  |
| 10           | 0.36 | 0.35         | 540   | 15560                   | 24.07  | 9.83            | 8207                    | M. S. 2009 Hot-wire spatial resolution issues in wall-   |
| 21           | 0.36 | 0.67         | 240   | 13856                   | 60.06  | 14.83           | 15430                   | bounded turbulence. J. Fluid Mech. 635, 103–136          |
| 30           | 0.34 | 0.96         | 120   | 10582                   | 101.01 | 18.64           | 21347                   |                                                          |
| 20           | 0.06 | 0.74         | 60    | 20837                   | 65.54  | 14.55           | 2745                    |                                                          |
| 20           | 0.08 | 0.73         | 60    | 16091                   | 65.54  | 14.31           | 3496                    |                                                          |
| 20           | 0.09 | 0.71         | 80    | 17538                   | 65.54  | 14.15           | 4229                    | - Kulandaivelu, V. 2012 Evolution of zero pressure       |
| 20           | 0.11 | 0.71         | 90    | 17201                   | 65.54  | 14.07           | 4823                    | gradient turbulent boundary layers from different ini-   |
| 20           | 0.13 | 0.69         | 100   | 15224                   | 65.54  | 13.61           | 5860                    | tial conditions. PhD thesis. The University of Mel-      |
| 21           | 0.19 | 0.69         | 120   | 13204                   | 65.54  | 13.67           | 8140                    | hourne Melhourne Australia                               |
| 20           | 0.23 | 0.66         | 180   | 15336                   | 65.54  | 13.12           | 10092                   | bourne, Meibourne, Australia                             |
| 20           | 0.32 | 0.64         | 180   | 11162                   | 65.54  | 12.62           | 13342                   |                                                          |
| 30           | 0.31 | 0.94         | 120   | 11597                   | 100.00 | 17.49           | 18094                   |                                                          |
| 41           | 0.30 | 1.25         | 100   | 13596                   | 100.00 | 31.52           | 23186                   |                                                          |
| 10           | 0.38 | 0.33         | 300   | 7964                    | 50.00  | 4.29            | 8079                    |                                                          |
| 15           | 0.37 | 0.48         | 600   | 24144                   | 50.00  | 9.30            | 11558                   |                                                          |
| 20           | 0.36 | 0.64         | 300   | 16698                   | 50.00  | 16.44           | 14771                   | ○ - Present data                                         |
| 25           | 0.35 | 0.78         | 300   | 21755                   | 50.00  | 24.65           | 16999                   |                                                          |
| 30           | 0.34 | 0.92         | 300   | 26672                   | 50.00  | 34.98           | 19672                   |                                                          |

(3) K Chauhan @ High Re BLT workshop - UNH

### 1.2 Experiments: PIV database



Hambleton, W., Hutchins, N. & Marusic, I. 2005 Simultaneous orthogonal plane PIV measurements in a turbulent boundary layer. *J. Fluid Mech.* **560**, 53–64

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. *J. Fluid Mech.* **422**, 1–54

de Silva, C. M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulentnonturbulent interface in high Reynolds number boundary layers. *Phys. Rev. Lett.* **111**, 044501



<sup>(4)</sup> K Chauhan @ High Re BLT workshop - UNH



(5) K Chauhan @ High Re BLT workshop - UNH

### 1.3 External intermittency



(5) K Chauhan @ High Re BLT workshop - UNH



(5) K Chauhan @ High Re BLT workshop - UNH



(6) K Chauhan @ High Re BLT workshop - UNH



#### (6) K Chauhan @ High Re BLT workshop - UNH



(6) K Chauhan @ High Re BLT workshop - UNH



(6) K Chauhan @ High Re BLT workshop - UNH



(6) K Chauhan @ High Re BLT workshop - UNH



#### (6) K Chauhan @ High Re BLT workshop - UNH



(6) K Chauhan @ High Re BLT workshop - UNH



<sup>(6)</sup> K Chauhan @ High Re BLT workshop - UNH



(6) K Chauhan @ High Re BLT workshop - UNH







### 1.5 Distribution at large $\ell$

Probability density function  $\mathcal{P}$  of  $\ell_{T}, \ell_{NT}$  $10^{2}$  $\gamma \approx 0.5$  $10^{1}$ 3  $\mathcal{P}(\ell_{\mathrm{T}}), \, \mathcal{P}(\ell_{\mathrm{NT}}), \, \mathcal{D}_{0}(\ell_{\mathrm{NT}})$  $\frac{1}{4}\frac{\delta}{4}$  $10^{-2}$  $10^{-3}$  $10^{-2}$  $10^{-3}$  $10^{-1}$  $10^{0}$  $10^{1}$  $\ell_{\rm T}/\delta, \ell_{\rm NT}/\delta$ 

# Corrsin, S. & Kistler, A. L. 1955 Free-stream boundaries of turbulent flows. Tech. Rep. TN-1244. NACA, Washington, DC

It would be interesting to know whether  $p_1$  and  $p_2$  approximate exponential distributions for large values of  $T_1$  and  $T_2$ . However, the uncertainty of the points in just this range is so great as to render such a quantitative question unanswerable.

### 1.5 Distribution at large $\ell$

Probability density function  $\mathcal{P}$  of  $\ell_{T}, \ell_{NT}$  $10^{2}$  $\gamma \approx 0.5$  $10^{1}$ 3  $10^{0}$  $\mathcal{D}^{(L_{\mathrm{T}})}, \mathcal{D}^{(\ell_{\mathrm{T}})}, \mathcal{D}^{(\ell_{\mathrm{T}})}, \mathcal{D}^{(\ell_{\mathrm{T}})}$  $\mid \delta$  $|\overline{4}|$  $10^{-3}$  $10^{-4}$  $10^{-3}$  $10^{-2}$  $10^{-1}$  $10^{0}$  $10^{1}$  $\ell_{\rm T}/\delta, \ell_{\rm NT}/\delta$ 

# Corrsin, S. & Kistler, A. L. 1955 Free-stream boundaries of turbulent flows. Tech. Rep. TN-1244. NACA, Washington, DC

It would be interesting to know whether  $p_1$  and  $p_2$  approximate exponential distributions for large values of  $T_1$  and  $T_2$ . However, the uncertainty of the points in just this range is so great as to render such a quantitative question unanswerable.

Exponential distribution  $\mathcal{P}(\ell) = \lambda \exp\left[-\lambda \left(\ell/\ell_{c}\right)\right]$ 

describes the time between events in a Poisson process, i.e. a process in which events occur continuously and *independently* at a *constant average rate*.

The distribution is memoryless.

### Part 2 - Local characteristics

(8) K Chauhan @ High Re BLT workshop - UNH

### 2.1 Conditional averaging relative to the TNTI



### 2.1 Conditional averaging relative to the TNTI



### 2.1 Conditional averaging relative to the TNTI



- ▶ Linear behaviour of velocity in the turbulent part (e.g. Kovasznay et al., 1970, JFM)
- ▶ Sharp change in velocity across the interface (e.g. Chen & Blackwelder, 1978, JFM)
- Similar observations in jets and wakes by Bisset et al. (2002); Westerweel et al. (2009)

## Laminar superlayer as first suggested by Corrsin & Kistler (1955)(NACA TN-1244) exists at the T/NT interface

#### (8) K Chauhan @ High Re BLT workshop - UNH

### 2.2 Scaling - conditional velocity deficit





| Experiment                     | $\delta^+$ | $U_{\infty} \ ({ m ms}^{-1})$ | $\delta$ (m) | $u_{	au}$ (m s <sup>-1</sup> ) | $L_x \times L_z$              | $\Delta x^+ \times \Delta z^+$ | $\tilde{k}$ | $N_{f}$ | Symbol |
|--------------------------------|------------|-------------------------------|--------------|--------------------------------|-------------------------------|--------------------------------|-------------|---------|--------|
| Hambleton <i>et al.</i> (2005) | 1230       | 6                             | 0.08         | 0.25                           | $1.5\delta \times 1.34\delta$ | 32×32                          | 0.15        | 1478    | •      |
| Adrian <i>et al.</i> (2000)    | 2790       | 11.4                          | 0.1          | 0.41                           | $1.4\delta \times 1.4\delta$  | 36×25                          | 0.15        | 50      |        |
| Melbourne PIV                  | 7870       | 10                            | 0.36         | 0.33                           | $2\delta \times 1.1\delta$    | 52×52                          | 0.12        | 1190    | •      |
| Melbourne PIV                  | 14500      | 20                            | 0.35         | 0.63                           | $2\delta\!\times\!1.1\delta$  | 49×49                          | 0.12        | 1250    |        |
|                                |            |                               |              |                                |                               |                                |             |         |        |

(9) K Chauhan @ High Re BLT workshop - UNH



0.63

 $2\delta \times 1.1\delta$ 

0.12

49×49

1250

(10) K Chauhan @ High Re BLT workshop - UNH

14500

20

0.35

Melbourne PIV



0.36

0.35

0.33

0.63

10

20

 $2\delta \times 1.1\delta$ 

 $2\delta \times 1.1\delta$ 

52×52

49×49

0.12

0.12

1190

1250

(10) K Chauhan @ High Re BLT workshop - UNH

7870

14500

Melbourne PIV

Melbourne PIV



(10) K Chauhan @ High Re BLT workshop - UNH



(10) K Chauhan @ High Re BLT workshop - UNH



2.4 The superlayer in the outer region



















2.4 The superlayer in the outer region



2.4 The superlayer in the outer region



2.4 The superlayer in the outer region



(11) K Chauhan @ High Re BLT workshop - UNH

### 2.5 Summary

### 1. Global characteristics

- The turbulent/non-turbulent zone lengths exhibit fractal scaling for the intermediate scales ( $\lambda_T \lesssim \ell \lesssim \delta/4$ ). The fractal dimension is -4/3.
- The tail of the probability density follows an exponential distribution. Large-scale turbulent/non-turbulent zones are appear in a statistically independent manner.

### 2.5 Summary

### 1. Global characteristics

- The turbulent/non-turbulent zone lengths exhibit fractal scaling for the intermediate scales ( $\lambda_T \lesssim \ell \lesssim \delta/4$ ). The fractal dimension is -4/3.
- The tail of the probability density follows an exponential distribution. Large-scale turbulent/non-turbulent zones are appear in a statistically independent manner.
- 2. Local characteristics (of superlayer)
  - $\blacktriangleright$  Superlayer is shown to exists at the TNTI over a wide Re range.
  - Superlayer jump contributes to the overall wake strength. The presence of superlayer in boundary layers explains the higher wake strength compared to pipe and channels.

APS talk: 'Scaling of the viscous superlayer in zero pressure gradient turbulent boundary layers' Session R31: Structure of Turbulent/Non-Turbulent Interface 1:00PM Tuesday, 11/26/13, Room: 402

### 2.5 Summary

### 1. Global characteristics

- The turbulent/non-turbulent zone lengths exhibit fractal scaling for the intermediate scales ( $\lambda_T \lesssim \ell \lesssim \delta/4$ ). The fractal dimension is -4/3.
- The tail of the probability density follows an exponential distribution. Large-scale turbulent/non-turbulent zones are appear in a statistically independent manner.
- 2. Local characteristics (of superlayer)
  - $\blacktriangleright$  Superlayer is shown to exists at the TNTI over a wide Re range.
  - Superlayer jump contributes to the overall wake strength. The presence of superlayer in boundary layers explains the higher wake strength compared to pipe and channels.

APS talk: 'Scaling of the viscous superlayer in zero pressure gradient turbulent boundary layers' Session R31: Structure of Turbulent/Non-Turbulent Interface 1:00PM Tuesday, 11/26/13, Room: 402

# Questions?