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Introduction

70km (45mi)

Time-lapse video of smoke over Sydney. Smoke emerging

from bushfires in Blue mountains, NSW (October 2013).

Lee, J. H., Kwon, Y. S., Monty, J. & Hutchins,

N. 2012 Tow-tank investigation of the developing

zero-pressure-gradient turbulent boundary layer. Bull.

Amer. Phys. Soc. 57 (17), DFD.R20.8

Visualisation of a boundary layer developing over

a flat plate in the tow-tank facility at UoM.

Reτ ≈ 0− 1000, δ = O(10cm) Reτ ≈ 106, δ = O(100m)
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Outline

1. Global characteristics
I External intermittency (turbulent/non-turbulent interface)
I Statistical features
I Organisation

2. Local characteristics of superlayer
I Scaling of superlayer width and the jump magnitude
I Implications for the outer flow
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1.1 Experiments: hot-wire database

O - Kulandaivelu, V. & Marusic, I. 2010 Evolution

of zero pressure gradient turbulent boundary layers.

In proceedings of 17th Australasian Fluid Mechanics

Conference. 5-9 December, Auckland, New Zealand

♦ - Hutchins, N., Nickels, T. B., Marusic, I. & Chong,

M. S. 2009 Hot-wire spatial resolution issues in wall-

bounded turbulence. J. Fluid Mech. 635, 103–136

� - Kulandaivelu, V. 2012 Evolution of zero pressure

gradient turbulent boundary layers from different ini-

tial conditions. PhD thesis, The University of Mel-

bourne, Melbourne, Australia

◦ - Present data

U∞ δ uτ Ts TsU∞/δ Fs dx+ Reτ
(m s−1) (m) (m s−1) (sec) (kHz) (δuτ/ν)

10 0.05 0.39 160 32307 50.00 5.37 1330
10 0.05 0.39 160 29298 50.00 5.20 1421
10 0.06 0.39 160 28037 50.00 5.21 1487
10 0.06 0.39 160 25749 50.00 5.23 1626
10 0.07 0.39 160 24159 50.00 5.21 1725
10 0.07 0.38 160 22452 50.00 5.10 1817
10 0.08 0.38 160 20856 50.00 5.09 1951
12 0.11 0.44 120 13373 24.07 14.26 3080
12 0.16 0.43 180 13757 24.07 13.74 4327
10 0.36 0.35 540 15560 24.07 9.83 8207
21 0.36 0.67 240 13856 60.06 14.83 15430
30 0.34 0.96 120 10582 101.01 18.64 21347
20 0.06 0.74 60 20837 65.54 14.55 2745
20 0.08 0.73 60 16091 65.54 14.31 3496
20 0.09 0.71 80 17538 65.54 14.15 4229
20 0.11 0.71 90 17201 65.54 14.07 4823
20 0.13 0.69 100 15224 65.54 13.61 5860
21 0.19 0.69 120 13204 65.54 13.67 8140
20 0.23 0.66 180 15336 65.54 13.12 10092
20 0.32 0.64 180 11162 65.54 12.62 13342
30 0.31 0.94 120 11597 100.00 17.49 18094
41 0.30 1.25 100 13596 100.00 31.52 23186
10 0.38 0.33 300 7964 50.00 4.29 8079
15 0.37 0.48 600 24144 50.00 9.30 11558
20 0.36 0.64 300 16698 50.00 16.44 14771
25 0.35 0.78 300 21755 50.00 24.65 16999
30 0.34 0.92 300 26672 50.00 34.98 19672

0 5000 10000 15000 20000 25000
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1.2 Experiments: PIV database

U∞ δ uτ Lx×Lz ∆x+×∆z+ Nf Reτ
(m s−1) (m) (m s−1) (δuτ/ν)

Hambleton et al. (2005) 6 0.08 0.25 1.5δ×1.34δ 32×32 1478 1230
Adrian et al. (2000) 11.4 0.1 0.41 1.4δ×1.4δ 36×25 50 2790
Melbourne PIV 10 0.36 0.33 2δ×1.1δ 52×52 1190 7900
Melbourne PIV 20 0.35 0.63 2δ×1.1δ 49×49 1250 14500

0 5000 10000 15000 20000 25000

Hambleton, W., Hutchins, N. & Marusic, I. 2005 Simultaneous orthogonal plane PIV measurements in a turbulent boundary

layer. J. Fluid Mech. 560, 53–64

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary

layer. J. Fluid Mech. 422, 1–54

de Silva, C. M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-

nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111, 044501
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1.3 External intermittency
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1.3 External intermittency
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1.3 External intermittency
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1.4 Characteristics of ` at γ = 0.5, i.e. (z/δ = 2/3)
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1.4 Characteristics of ` at γ = 0.5, i.e. (z/δ = 2/3)

outer scaling inner scaling

10
1

10
2

10
3

10
4

10
5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

η
+
,
K
ol
m
og
or
ov

λ
+ T
,
T
ay
lo
r

γ ≈ 0.5

-4

3

P
(`

T
),
P
(`

N
T
)

`T/(ν/uτ ), `NT/(ν/uτ )

Re

Probability density function P of `T, `NTProbability density function P of `T, `NT

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

10
2

γ ≈ 0.5

P
(`

T
),
P
(`

N
T
)

`T/δ, `NT/δ

-4

3

δ

4

(6) K Chauhan @ High Re BLT workshop - UNH



1.5 Distribution at large `

1058 REPORT 1244-NATIONAL ADVlSORY COMMl'ITEE FOR AERONAUTICS 

From the fluid-mechanical point of view this gives a conven­
ient measure of the wave lengths of the mountains and valleys 
in the turbulence front. The laminar superlayer is thin 
enough to be considered a discontinuity in all of this analysis. 

If TI is the duration of the probe in a turbulent zone and 
n, the duration in a nonturbulent zone, figure 29 gives the 
probability densities PI(TI) and P2(T2) at three different 
values of transversal position, that is, three different values 
of the intermittency factor. 

By definition (of probability density), the curves in figure 
29 are normalized to unit area.. A check on their accuracy , 
is given by the more or less obvious condition 

(82) 

where 

curves in figure 29 have been labeled with the '¥'S actually 
given by these short samples, and the apparent discrepancies 
(b) and (c) are qualitatively explained. In other words, a 
short sample with actual "'( ="'(1 drawn from an infinite record 
with 'Y ="'(2 can be expected to show other statistical proper­
ties resembling those of an infinite record with 'Y ='Yl' 

Two other sources of uncertainty in the data of figure 29 
are (1) the natural uncertainty of measurement in the 
presence of noise, even with perfect equipment, and (2) im­
perfections in measuring equipment and techniques. 

The first of these difficulties affects all intermittency meas­
ureinents and is basically insurmountable. Of course, the 
noise level could be reduced somewhat and, under simplifying 
statistical assumptions on both noise and signal, some esti­
mate of the effect could be made. 

, The second difficulty probably affects PI and P2 measure­
ments more seriously than direct 'Y measurements. For ex­
ample, suppose that the measuring process misses a sizable 

The terms TI and T2 are average pulse durations in units ,number of the shortest turbulent bursts. This fault will 
of time and are functions of y or, alternatively, of"'( since 'Y(y) scarcely affect the directly measured 'Y since these contain 
is monotonic. , only a small part of the total number of pulses to be counted 

The computations from figure 29 give (for 0=3.5 inches): ' ,(except for ",«<1). On the other hand, this fault will not 

11/3 ~ n,sec T.,seo ~Ti 1,,1n. l:,1n. 
measured and 7'. 

0.72 0.7!i 0.0165 0.0060 0,72 7,0 2.7 

0.8& 0.1iO 0.0106 0.0082 O.M 4.8 3.7 

0.98 0.25 0.0069 0.0132 0.3( 3.1 6.9 

where ll=U",T1 and ~=U",T2 are approximate measures of 
the spatial extension of the average intervals in this x vicinity. 
This interpretation of the l's as average intercept lengths for 
the random variable Y(x) gets increasingly accurate as the 
velocity fluctuation level decreases. This time-space trans­
formation is, in fact, identical with that first proposed by 
Taylor for an isotropic turbulence (ref. 36) and discussed in 
more detail by others (refs. 37 and 18). 

A comparison between ~ (II +12) for "'(=0.50 and the stan­

dard deviation 0" of Y 1 (t) at the same x-station gives a rough 
measure of the flatness of the wrinkled turbulence front. 
For this particular station in the boundary layer, 

20" 
4+4",,0.13 (83) 

which indicates a rather fiat front, as assumed in the earlier 
theoretical discussion on the propagation of the laminar 
superlayer. 

Inspection of figure 29 shows the following traits of the 
data: 

(a) The points are rather scattered. 
(b) For 'Y =0.50, PI and pj show an appreciable difference. 
(c) The 'Y =0.25 and "'( =0.75 cases, which might be ~-

pected to have identical curves with reversed labels, show 
this character qualitatively, though not accurately. 

Properties (b) and (c) can apparently be attributed chiefly 
to the shortness of oscillographic samples;8 therefore, the 

I About 3 seconds, as compared with the 2 minutes used In obtaining the .ys directly. 

only change the character of PI (TI ) for small values of Tl but 
, 'also will change the level of P2(T2) for large values of T2, since 

the very short turbulent bursts subdivide long potential 
"burSts intO. shorter ones. Hence, this fault will seriously 
affect T2 and, therefore, 'Y as computed from TI and 1'2' 
Precisely this lault is observable on the oscillographic traces. 

Other defects similarly observed are the (relatively in­
frequent) missing of short potential bursts and the occasional 
overhang 'of the trigger signal beyond the duratIOn of a tur­
bulent burst. The last of these faults affects the direct 'Y 

measurement as well. 
An obvious way around some of these difficulties is the 

direct use of W) or ~ (t) oscillograms to compute PI and P2. 

To some extent this was done, and the extreme tediousness 
of this method is exactly why the samples processed are so 
short. 

This inadequate sample length (fault (3)) most,seriously 
affects the results in the large Tl and T2 ranges. The relat.ive 
seriousness of this limitation for long versus short pulses is 
not given (as might be guessed at first blush) by the ratio of 
sample length to pulse length but by the ratio of sample 
length to the inverse of the frequency of occurrence of the 
particular length of pulse (actually a small range) in question. 
For example, in a 3-second oscillographic sample, the points 
on the tails of PI and P2 may represent as few as one or two 
actual occurrences. With this in mind it can be concluded 
that the agreement between values of 'Y obtained via TI and 
T2 and values of "'( directly measured is surprisingly good. 

It would be interesting to know whether PI and P2 approxi­
mate exponential distributions for large values of Tl and T2• 

However, the uncertainty of the points in just this range is 
so great as to render such a quantitative question unanswer­
able. Some very indirect evidence via the power spectrum 
of the Schmitt trigger output for "'( =0.50 will be discussed 
in a following section. 

Since the small TI and T2 ranges of PI and P2 are quite un­
o certain (i.e., for bursts shorter than 2 milliseconds), some 

Corrsin, S. & Kistler, A. L. 1955 Free-stream
boundaries of turbulent flows. Tech. Rep. TN-
1244. NACA, Washington, DC
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measurement as well. 
An obvious way around some of these difficulties is the 

direct use of W) or ~ (t) oscillograms to compute PI and P2. 

To some extent this was done, and the extreme tediousness 
of this method is exactly why the samples processed are so 
short. 

This inadequate sample length (fault (3)) most,seriously 
affects the results in the large Tl and T2 ranges. The relat.ive 
seriousness of this limitation for long versus short pulses is 
not given (as might be guessed at first blush) by the ratio of 
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that the agreement between values of 'Y obtained via TI and 
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It would be interesting to know whether PI and P2 approxi­
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However, the uncertainty of the points in just this range is 
so great as to render such a quantitative question unanswer­
able. Some very indirect evidence via the power spectrum 
of the Schmitt trigger output for "'( =0.50 will be discussed 
in a following section. 

Since the small TI and T2 ranges of PI and P2 are quite un­
o certain (i.e., for bursts shorter than 2 milliseconds), some 

Corrsin, S. & Kistler, A. L. 1955 Free-stream
boundaries of turbulent flows. Tech. Rep. TN-
1244. NACA, Washington, DC
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2.1Part 2 - Local characteristics
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2.1 Conditional averaging relative to the TNTI
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I Linear behaviour of velocity in the turbulent part (e.g. Kovasznay et al., 1970, JFM)

I Sharp change in velocity across the interface (e.g. Chen & Blackwelder, 1978, JFM)

I Similar observations in jets and wakes by Bisset et al. (2002); Westerweel et al. (2009)

Laminar superlayer as first suggested by Corrsin & Kistler (1955)(NACA TN-1244) exists
at the T/NT interface
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2.2 Scaling - conditional velocity deficit
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A sharp change in velocity akin to a jump
is present at all Re

Experiment δ+ U∞ δ uτ Lx×Lz ∆x+×∆z+ k̃ Nf Symbol
(m s−1) (m) (m s−1)

Hambleton et al. (2005) 1230 6 0.08 0.25 1.5δ×1.34δ 32×32 0.15 1478 �
Adrian et al. (2000) 2790 11.4 0.1 0.41 1.4δ×1.4δ 36×25 0.15 50 H
Melbourne PIV 7870 10 0.36 0.33 2δ×1.1δ 52×52 0.12 1190 •
Melbourne PIV 14500 20 0.35 0.63 2δ×1.1δ 49×49 0.12 1250 �
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2.4 The superlayer in the outer region

D[U ]

Velocity jump

0 5000 10000 15000
0

0.02

0.04

0.06

δω

δ

δ+

δω
δ
→ 0

10
3

10
4

0

1

2

3

D[〈Ũ〉]
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also Nee & Kovasznay (1969), Huffman & Brad-
shaw (1972) and Jiménez et al. (2010)
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2.5 Summary

1. Global characteristics
I The turbulent/non-turbulent zone lengths exhibit fractal scaling for the

intermediate scales (λT . ` . δ/4). The fractal dimension is -4/3.
I The tail of the probability density follows an exponential distribution.

Large-scale turbulent/non-turbulent zones are appear in a statistically

independent manner.

2. Local characteristics (of superlayer)
I Superlayer is shown to exists at the TNTI over a wide Re range.
I Superlayer jump contributes to the overall wake strength. The presence of

superlayer in boundary layers explains the higher wake strength compared to

pipe and channels.

APS talk: ’Scaling of the viscous superlayer in zero pressure gradient turbulent boundary layers’
Session R31: Structure of Turbulent/Non-Turbulent Interface
1:00PM Tuesday, 11/26/13, Room: 402

Questions?
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