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Figure 1: Conditional averages on r. The overbars stand for conditionally averaged quantities. (a) Intensity
of the vorticity in 0.5 < x2/� < 1 (solid) and 1 < x2/� < 1.5 (dashed) for BL1( e), BL2(4) and
BL3( ) . (b) The budget terms of the intensity of fluctuation vorticity , T (4), S (⇧), D ( ) and V ( e),
in 1 < x2/� < 1.5 for BL2. (c) Interface velocity contributed by the budget terms shown in (b). Vertical
dashed lines in (b) and (c) indicate the bounds of the viscous layer. All the quantities are normalized by the
Kolmogorov’s scales.
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Recent work - Y. Mizuno, O. Amili, J. Soria

! Examined statistics about the interface:
- position, intermittency factor, velocity, enstrophy

! Contribution of terms in the vorticity evolution equation to the 
advancement of the interface
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! What is the dynamical process by which irrotational fluid particles are 
entrained across the interface and gain enstrophy?

! Can we identify a structure, topology and time-scale associated with 
this process?

! What is the best means of investigating evolution associated with the 
T/NT interface?
1.Compute Lagrangian evolution of VGT invariants

Open Questions:

(color: enstrophy field, black dots: interface position, black lines: r)



! What is the dynamical process by which irrotational fluid particles are 
entrained across the interface and gain enstrophy?

! Can we identify a structure, topology and time-scale associated with 
this process?

! What is the best means of investigating evolution associated with the 
T/NT interface?
1.Compute Lagrangian evolution of VGT invariants
2.Track fluid particles across the interface

Open Questions:

(color: enstrophy field, black dots: interface position, black lines: r)
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Flow Topology

! Represent the topology of the T/NT interface in terms of critical point 
theory (Chong, Perry and Cantwell, 1990)

Incompressible flow PA = 0
(Chong et al. 1990, Soria et al. 1994)

SF/S UF/C

UN/S/SSN/S/S

behavior previously mentioned.

Recently Elsinga and Marusic [12] calculated the rate of change of in-

variants and CMTs for a turbulent boundary layer at Re
✓

= 2460 using

experimental tomographic particle image velocimetry data in a region 88 <

y+ < 240 wall units, ⌫/u
⌧

, above the wall. A similar clockwise spiraling and

evolution was observed in this region of the boundary layer with a cycle time

of 14.3 �/U
e

, 470 ⌫/u2
⌧

or 1 ⌧
eddy

in terms of outer, inner and eddy time-scales,

respectively.

In this paper we present an investigation of the Lagrangian mean evo-

lution of the invariants of the VGT in di↵erent regions of a developing tur-

bulent boundary layer from 730 < Re
✓

< 1954 using data from a DNS of

a zero pressure gradient turbulent boundary layer by [24]. From this the

mean time-scales associated with the topological evolution of structures in

di↵erent regions of a turbulent boundary layer are extracted and compared

with models for the evolution of the VGT.

2 Theoretical background

Comprehensive background and derivation of the topological methodology

and the relationship between the invariants of the velocity gradient tensor

and local flow topology can be found in [9, 5, 20] among others. A brief

summary, definitions and aspects relating to the present flow are presented

below. The VGT A
ij

= @u
i

/@x
j

at a point in the flow has the characteristic

equation:

�3
i

+ P
A

�2
i

+ Q
A

�
i

+ R
A

= 0, (1)

where �
i

are the eigenvalues of A
ij

and P
A

, Q
A

and R
A

are the first, second

and third invariants. For incompressible flows P
A

= �A
ii

= 0, meaning the

local flow topology can be expressed in terms of invariants Q
A

and R
A

, as

given by the following expressions:

Q
A

= �1
2Aij

A
ji

, (2)

R
A

= �1
3Aij

A
jk

A
ki

. (3)

Figure 1 shows the two-dimensional representation of the (R
A

, Q
A

)-plane and

the regions associated with the four possible non-degenerate local flow topolo-

gies (stable-focus/stretching (SF/S), unstable-focus/contracting (UF/C), stable-

node/saddle/saddle (SN/S/S) and unstable-node/saddle/saddle (UN/S/S))

7

behavior previously mentioned.

Recently Elsinga and Marusic [12] calculated the rate of change of in-

variants and CMTs for a turbulent boundary layer at Re
✓

= 2460 using

experimental tomographic particle image velocimetry data in a region 88 <

y+ < 240 wall units, ⌫/u
⌧

, above the wall. A similar clockwise spiraling and

evolution was observed in this region of the boundary layer with a cycle time

of 14.3 �/U
e

, 470 ⌫/u2
⌧

or 1 ⌧
eddy

in terms of outer, inner and eddy time-scales,

respectively.

In this paper we present an investigation of the Lagrangian mean evo-

lution of the invariants of the VGT in di↵erent regions of a developing tur-

bulent boundary layer from 730 < Re
✓

< 1954 using data from a DNS of

a zero pressure gradient turbulent boundary layer by [24]. From this the

mean time-scales associated with the topological evolution of structures in

di↵erent regions of a turbulent boundary layer are extracted and compared

with models for the evolution of the VGT.

2 Theoretical background

Comprehensive background and derivation of the topological methodology

and the relationship between the invariants of the velocity gradient tensor

and local flow topology can be found in [9, 5, 20] among others. A brief

summary, definitions and aspects relating to the present flow are presented

below. The VGT A
ij

= @u
i

/@x
j

at a point in the flow has the characteristic

equation:

�3
i

+ P
A

�2
i

+ Q
A

�
i

+ R
A

= 0, (1)

where �
i

are the eigenvalues of A
ij

and P
A

, Q
A

and R
A

are the first, second

and third invariants. For incompressible flows P
A

= �A
ii

= 0, meaning the

local flow topology can be expressed in terms of invariants Q
A

and R
A

, as

given by the following expressions:

Q
A

= �1
2Aij

A
ji

, (2)

R
A

= �1
3Aij

A
jk

A
ki

. (3)

Figure 1 shows the two-dimensional representation of the (R
A

, Q
A

)-plane and

the regions associated with the four possible non-degenerate local flow topolo-

gies (stable-focus/stretching (SF/S), unstable-focus/contracting (UF/C), stable-

node/saddle/saddle (SN/S/S) and unstable-node/saddle/saddle (UN/S/S))

7

behavior previously mentioned.

Recently Elsinga and Marusic [12] calculated the rate of change of in-

variants and CMTs for a turbulent boundary layer at Re
✓

= 2460 using

experimental tomographic particle image velocimetry data in a region 88 <

y+ < 240 wall units, ⌫/u
⌧

, above the wall. A similar clockwise spiraling and

evolution was observed in this region of the boundary layer with a cycle time

of 14.3 �/U
e

, 470 ⌫/u2
⌧

or 1 ⌧
eddy

in terms of outer, inner and eddy time-scales,

respectively.

In this paper we present an investigation of the Lagrangian mean evo-

lution of the invariants of the VGT in di↵erent regions of a developing tur-

bulent boundary layer from 730 < Re
✓

< 1954 using data from a DNS of

a zero pressure gradient turbulent boundary layer by [24]. From this the

mean time-scales associated with the topological evolution of structures in

di↵erent regions of a turbulent boundary layer are extracted and compared

with models for the evolution of the VGT.

2 Theoretical background

Comprehensive background and derivation of the topological methodology

and the relationship between the invariants of the velocity gradient tensor

and local flow topology can be found in [9, 5, 20] among others. A brief

summary, definitions and aspects relating to the present flow are presented

below. The VGT A
ij

= @u
i

/@x
j

at a point in the flow has the characteristic

equation:

�3
i

+ P
A

�2
i

+ Q
A

�
i

+ R
A

= 0, (1)

where �
i

are the eigenvalues of A
ij

and P
A

, Q
A

and R
A

are the first, second

and third invariants. For incompressible flows P
A

= �A
ii

= 0, meaning the

local flow topology can be expressed in terms of invariants Q
A

and R
A

, as

given by the following expressions:

Q
A

= �1
2Aij

A
ji

, (2)

R
A

= �1
3Aij

A
jk

A
ki

. (3)

Figure 1 shows the two-dimensional representation of the (R
A

, Q
A

)-plane and

the regions associated with the four possible non-degenerate local flow topolo-

gies (stable-focus/stretching (SF/S), unstable-focus/contracting (UF/C), stable-

node/saddle/saddle (SN/S/S) and unstable-node/saddle/saddle (UN/S/S))

7

Aij = Sij +Wij

QW / ! · !



r

JPDF of Q,R invariant across interface of a Jet

! JPDF of QA and RA

➡ similar to da Silva & Pereira (2008) at the interface of jet

Reθ = 1610

r+

vortex stretching

SF/S

UN/S/S



Topological Evolution

! Represent the Lagrangian evolution of the flow in terms of the change 
in flow topology (Cantwell, 1992)

SF/S UF/C

UN/S/SSN/S/S

! Trace position in Qa, Ra plane as 
function of time - Lagrangian 
tracking

! Evaluate RHS of Navier-Stokes and 
Compute change in DQA/Dt, DRA/Dt 
conditional on QA,RA t1

t2

t3

t4 t5 t6

Incompressible flow PA = 0
(Chong et al. 1990, Soria et al. 1994)

DQA

Dt
= �3RA �AikHki

DRA

Dt
=

2
3
Q2

A �AinAnmHmi

Hij = �
�

⇤2p

⇤xi⇤xj
� ⇤2p

⇤xk⇤xk

�ij

3

⇥
+ ⇥

⇤2Aij

⇤xk⇤xk



Conditional Mean Trajectories

! Mean time-scale associated with spiraling evolution
- time-scale of ‘periodic’ evolution of flow topology

TBL at Re𝛉 = 730 to 1954 (Atkinson et al. 2012)

TABLE II. Mean evolution time-scales associated with spiraling CMTs in each region of the bound-

ary layer, where hQ
W

i1/2
l

is proportional to the mean local enstrophy in that region of the boundary

layer, ⌫/u

2
⌧

is the inner time-scale, �/U

e

is the outer unit time-scale, (⌫/ h✏i
l

)

1/2
is the Kolmogorov

time-scale based on the mean dissipation in each region and �/u

rms

is the estimated eddy-turnover

time.

Region t/hQ
W

i1/2
l

t/(⌫/u

2
⌧

) t/(�/U

e

) t/(⌫/ h✏i
l

)

1/2
t/(�/u

rms

)

Viscous layer 36.5 67.9 2.10 73.2 0.259

Bu↵er layer 34.5 151 4.65 69.9 0.575

Log and wake 22.4 658 20.3 45.9 2.51

TABLE III. Percentage of time spent by spiraling CMTs in each region of the (R

A

, Q

A

)-plane.

Region SF/S UF/C UN/S/S SN/S/S

(%) (%) (%) (%)

Viscous layer 37.4 31.6 16.7 14.3

Bu↵er layer 40.3 33.4 16.7 9.55

Log and wake layer 30.4 24.6 34.7 10.4

following the elongation of the JPDF towards the right-hand side discriminant. Percentages

in the log and wake region are closer to those observed by Martin et al.

6 in homogeneous

isotropic turbulence than those observed by Elsinga and Marusic10 in the log layer, which

in this case are closer to those in the bu↵er layer. This corresponds to the relative location

of the measurements and indicates a reasonable agreement in topological times.

VIII. PHYSICAL INTERPRETATION

Fig. 9 shows the instantaneous flow structure associated with focal or vortical structures

as identified by iso-contours of D
A

= 10 hQ
W

i3
total

, represented by a single curve (red line)

of constant D
A

in the strong gradient regions of the (R
A

, Q
A

)-plane spanning both SF/S

and UF/C topologies. These structures occupy 3% of the total volume yet are responsible

for 38% of the total enstrophy. In physical space individual structures appear as straight
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Figure 12: CMT in the (R
A

, Q
A

)-plane over a domain corresponding to the
most probable gradients near the origin and the spiraling regions for: (a, b)
viscous layer; (c, d) bu↵er layer and (e, f) log and wake layers of a turbulent
boundary layer from Re

✓

= 730 to 1954. The tent like line represents the
zero discriminant lines D

A

for the VGT. The dot indicates the beginning of
the spiraling CMT.
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log and wake region of TBL at Re𝛉 = 730 to 1954 (Atkinson et al. 2012)



Conditional Mean Trajectories

! Mean time-scale associated with spiraling evolution
- time-scale of ‘periodic’ evolution of flow topology

TBL at Re𝛉 = 730 to 1954 (Atkinson et al. 2012)

TABLE II. Mean evolution time-scales associated with spiraling CMTs in each region of the bound-

ary layer, where hQ
W

i1/2
l

is proportional to the mean local enstrophy in that region of the boundary

layer, ⌫/u

2
⌧

is the inner time-scale, �/U

e

is the outer unit time-scale, (⌫/ h✏i
l

)

1/2
is the Kolmogorov

time-scale based on the mean dissipation in each region and �/u

rms

is the estimated eddy-turnover

time.

Region t/hQ
W

i1/2
l

t/(⌫/u

2
⌧

) t/(�/U

e

) t/(⌫/ h✏i
l

)

1/2
t/(�/u

rms

)

Viscous layer 36.5 67.9 2.10 73.2 0.259

Bu↵er layer 34.5 151 4.65 69.9 0.575

Log and wake 22.4 658 20.3 45.9 2.51

TABLE III. Percentage of time spent by spiraling CMTs in each region of the (R

A

, Q

A

)-plane.

Region SF/S UF/C UN/S/S SN/S/S

(%) (%) (%) (%)

Viscous layer 37.4 31.6 16.7 14.3

Bu↵er layer 40.3 33.4 16.7 9.55

Log and wake layer 30.4 24.6 34.7 10.4

following the elongation of the JPDF towards the right-hand side discriminant. Percentages

in the log and wake region are closer to those observed by Martin et al.

6 in homogeneous

isotropic turbulence than those observed by Elsinga and Marusic10 in the log layer, which

in this case are closer to those in the bu↵er layer. This corresponds to the relative location

of the measurements and indicates a reasonable agreement in topological times.

VIII. PHYSICAL INTERPRETATION

Fig. 9 shows the instantaneous flow structure associated with focal or vortical structures

as identified by iso-contours of D
A

= 10 hQ
W

i3
total

, represented by a single curve (red line)

of constant D
A

in the strong gradient regions of the (R
A

, Q
A

)-plane spanning both SF/S

and UF/C topologies. These structures occupy 3% of the total volume yet are responsible

for 38% of the total enstrophy. In physical space individual structures appear as straight
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Figure 12: CMT in the (R
A

, Q
A

)-plane over a domain corresponding to the
most probable gradients near the origin and the spiraling regions for: (a, b)
viscous layer; (c, d) bu↵er layer and (e, f) log and wake layers of a turbulent
boundary layer from Re

✓

= 730 to 1954. The tent like line represents the
zero discriminant lines D

A

for the VGT. The dot indicates the beginning of
the spiraling CMT.
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log and wake region of TBL at Re𝛉 = 730 to 1954 (Atkinson et al. 2012)

Trajectories and periods vary with wall normal 
height - only valid if flow remain in that domain



Identifying the T/NT interface

! Interface based on vorticity threshold 0.01 to 0.1                    
                                                            (Borrell et al.)

! DNS TBL Re𝝉 ~ 600 (Mizuno et al.) 18 fields

y+ = 524 �y+ = 101

|!+|(�+)�1/2

DA = 0



Conditional mean trajectories at T/NT interface

CMT 6𝝈Q,R

y+ = 524 �y+ = 101

Strain dominated UN/S/S

! Interface based on vorticity threshold 0.01 to 0.1                    
                                                            (Borrell et al.)

! DNS TBL Re𝝉 ~ 600 (Mizuno et al.) 18 fields

|!+|(�+)�1/2



Conditional mean trajectories at T/NT interface

CMT 2𝝈Q,R

y+ = 524 �y+ = 101

! Interface based on vorticity threshold 0.01 to 0.1                    
                                                            (Borrell et al.)

! DNS TBL Re𝝉 ~ 600 (Mizuno et al.) 18 fields

|!+|(�+)�1/2



Conditional mean trajectories at T/NT interface

CMT 0.2𝝈Q,R

y+ = 524 �y+ = 101

! Interface based on vorticity threshold 0.01 to 0.1                    
                                                            (Borrell et al.)

! DNS TBL Re𝝉 ~ 600 (Mizuno et al.) 18 fields

|!+|(�+)�1/2

DA = 0



Conditional mean trajectories at T/NT interface

CMT 0.2𝝈Q,R

y+ = 524 �y+ = 101

! Interface based on vorticity threshold 0.01 to 0.1                    
                                                            (Borrell et al.)

! DNS TBL Re𝝉 ~ 600 (Mizuno et al.) 18 fields

|!+|(�+)�1/2



Conditional mean trajectories at T/NT interface

CMT 0.2𝝈Q,R

y+ = 524 �y+ = 101

Mean Trajectories are only valid if flow remains 
this threshold

! Interface based on vorticity threshold 0.01 to 0.1                    
                                                            (Borrell et al.)

! DNS TBL Re𝝉 ~ 600 (Mizuno et al.) 18 fields

|!+|(�+)�1/2



Fluid Particle Tracking

! Turbulent boundary layer DNS (Simens et al 2009, Sillero et al. 2011)

Equation and after Poisson correction for the divergence. The position of all master particles
(centre of particle is contained in the node) and slave particles (part of the interpolation kernel
of a particle from an adjacent node) is stored for each computationally domain similar to that
used by Uhlmann [26]. With each update of the particle position a test is performed to see
whether a particle or it’s interpolation kernel crosses the boundary of it’s parent node, forcing
the transition of a slave to a master or the formation of a new slave, respectively.

The velocity gradient tensor (VGT) at each particle was evaluated by first determine
the velocity gradients at the centre of each cell using 2nd order central finite difference,
consistent with the methodology used for the Poisson correction. It was assumed that the error
associated with this scheme would be insignificant in comparison to the error introduction by
the interpolation (at least for lower order schemes), however this assumption is yet to be tested.
Each component of the VGT was then interpolated following the same procedure used for the
velocity field. Tests were also performed to see if the velocity gradients could be determined from
differentiation of the spline fits as suggested by Yeung and Pope [14], which does not require the
differentiation of the velocity field or additional interpolation and is therefore far more efficient.

A similar process was performed in the channel flow using both cubic (degree 4) B-splines
and the four point Hermite interpolation discussed in section 3. Particle positions and velocities
were similarly computed at each Runge-Kutta sub-step. Pseudo-spectral methods were used to
compute the velocity gradient at each grid point, from which each component of the velocity
gradients tensor was calculated at each particle location via same spline interpolation.

5. Results
To test the effect of Hermite spline order and the size of the time-step on particle trajectories
and the Lagrangian evolution of invariants of the VGT, a turbulent boundary layer DNS was
run over two moderate resolution grids whose dimensions and grid spacing are listed in Table 1.
Initial testing was perform on the smaller grid in order to test the basic implementation of the
code and interpolation before extending the code to more realistic simulations.

Table 1. Parameters of the zero-pressure gradient boundary layer DNS. Nx, Ny and Nz are the
grid sizes along the three axes, expressed for z in terms of collocation points, with ∆ representing
the corresponding resolutions at their coarsest points.

Reτ (Lx, Ly, Lz)/δ ∆x+,∆y+,∆z+ Nx, Ny, Nz Particles

126− 190 7.6× 9.0× 10.5 13.4× 0.33× 6.2 257× 315× 768 1200
137− 800 20.7× 15.7× 55.4 13.6× 0.18× 12.5 4097× 315× 768 28800

In the absence of known particle trajectories the accuracy of a given interpolation scheme
was tested based on how the particle position differed from that produced by a higher order
interpolation or a shorter time-step ∆t, given that position error is a function of both the
interpolation error and the time-step. The time-step from this point on will be quoted in terms
of Courant-Friedrichs-Lewy number CFL = U∆t/∆x, where U is the free stream velocity and
∆x is the computation cell length. In addition to this for an incompressible flow the divergence
∂ui/∂xi measured at the particle location can also be used as an indication of the accuracy of the
velocity gradients calculated for each particle. Figure 7 shows the difference in the divergence
obtained when calculating the velocity gradients at each particle from the gradient of a spline
fitted to the velocity field (as suggest by [14]) compared to fitting a separate spline to the
gradients of the velocity field at each grid point. Separate interpolation of each component
of the VGT provides a divergence that is typically five orders of magnitude smaller than that

Equation and after Poisson correction for the divergence. The position of all master particles
(centre of particle is contained in the node) and slave particles (part of the interpolation kernel
of a particle from an adjacent node) is stored for each computationally domain similar to that
used by Uhlmann [26]. With each update of the particle position a test is performed to see
whether a particle or it’s interpolation kernel crosses the boundary of it’s parent node, forcing
the transition of a slave to a master or the formation of a new slave, respectively.

The velocity gradient tensor (VGT) at each particle was evaluated by first determine
the velocity gradients at the centre of each cell using 2nd order central finite difference,
consistent with the methodology used for the Poisson correction. It was assumed that the error
associated with this scheme would be insignificant in comparison to the error introduction by
the interpolation (at least for lower order schemes), however this assumption is yet to be tested.
Each component of the VGT was then interpolated following the same procedure used for the
velocity field. Tests were also performed to see if the velocity gradients could be determined from
differentiation of the spline fits as suggested by Yeung and Pope [14], which does not require the
differentiation of the velocity field or additional interpolation and is therefore far more efficient.

A similar process was performed in the channel flow using both cubic (degree 4) B-splines
and the four point Hermite interpolation discussed in section 3. Particle positions and velocities
were similarly computed at each Runge-Kutta sub-step. Pseudo-spectral methods were used to
compute the velocity gradient at each grid point, from which each component of the velocity
gradients tensor was calculated at each particle location via same spline interpolation.

5. Results
To test the effect of Hermite spline order and the size of the time-step on particle trajectories
and the Lagrangian evolution of invariants of the VGT, a turbulent boundary layer DNS was
run over two moderate resolution grids whose dimensions and grid spacing are listed in Table 1.
Initial testing was perform on the smaller grid in order to test the basic implementation of the
code and interpolation before extending the code to more realistic simulations.

Table 1. Parameters of the zero-pressure gradient boundary layer DNS. Nx, Ny and Nz are the
grid sizes along the three axes, expressed for z in terms of collocation points, with ∆ representing
the corresponding resolutions at their coarsest points.

Reτ (Lx, Ly, Lz)/δ ∆x+,∆y+,∆z+ Nx, Ny, Nz Particles

126− 190 7.6× 9.0× 10.5 13.4× 0.33× 6.2 257× 315× 768 1200
137− 800 20.7× 15.7× 55.4 13.6× 0.18× 12.5 4097× 315× 768 28800

In the absence of known particle trajectories the accuracy of a given interpolation scheme
was tested based on how the particle position differed from that produced by a higher order
interpolation or a shorter time-step ∆t, given that position error is a function of both the
interpolation error and the time-step. The time-step from this point on will be quoted in terms
of Courant-Friedrichs-Lewy number CFL = U∆t/∆x, where U is the free stream velocity and
∆x is the computation cell length. In addition to this for an incompressible flow the divergence
∂ui/∂xi measured at the particle location can also be used as an indication of the accuracy of the
velocity gradients calculated for each particle. Figure 7 shows the difference in the divergence
obtained when calculating the velocity gradients at each particle from the gradient of a spline
fitted to the velocity field (as suggest by [14]) compared to fitting a separate spline to the
gradients of the velocity field at each grid point. Separate interpolation of each component
of the VGT provides a divergence that is typically five orders of magnitude smaller than that

2.5 x 106

! Cubic Hermite spline interpolation
! track every Δt+ =0.12     RK3 time step, CFL=0.4

1024



Fluid Particle Tracking

! Turbulent boundary layer DNS (Simens et al 2009, Sillero et al. 2011)

Equation and after Poisson correction for the divergence. The position of all master particles
(centre of particle is contained in the node) and slave particles (part of the interpolation kernel
of a particle from an adjacent node) is stored for each computationally domain similar to that
used by Uhlmann [26]. With each update of the particle position a test is performed to see
whether a particle or it’s interpolation kernel crosses the boundary of it’s parent node, forcing
the transition of a slave to a master or the formation of a new slave, respectively.

The velocity gradient tensor (VGT) at each particle was evaluated by first determine
the velocity gradients at the centre of each cell using 2nd order central finite difference,
consistent with the methodology used for the Poisson correction. It was assumed that the error
associated with this scheme would be insignificant in comparison to the error introduction by
the interpolation (at least for lower order schemes), however this assumption is yet to be tested.
Each component of the VGT was then interpolated following the same procedure used for the
velocity field. Tests were also performed to see if the velocity gradients could be determined from
differentiation of the spline fits as suggested by Yeung and Pope [14], which does not require the
differentiation of the velocity field or additional interpolation and is therefore far more efficient.

A similar process was performed in the channel flow using both cubic (degree 4) B-splines
and the four point Hermite interpolation discussed in section 3. Particle positions and velocities
were similarly computed at each Runge-Kutta sub-step. Pseudo-spectral methods were used to
compute the velocity gradient at each grid point, from which each component of the velocity
gradients tensor was calculated at each particle location via same spline interpolation.

5. Results
To test the effect of Hermite spline order and the size of the time-step on particle trajectories
and the Lagrangian evolution of invariants of the VGT, a turbulent boundary layer DNS was
run over two moderate resolution grids whose dimensions and grid spacing are listed in Table 1.
Initial testing was perform on the smaller grid in order to test the basic implementation of the
code and interpolation before extending the code to more realistic simulations.

Table 1. Parameters of the zero-pressure gradient boundary layer DNS. Nx, Ny and Nz are the
grid sizes along the three axes, expressed for z in terms of collocation points, with ∆ representing
the corresponding resolutions at their coarsest points.

Reτ (Lx, Ly, Lz)/δ ∆x+,∆y+,∆z+ Nx, Ny, Nz Particles

126− 190 7.6× 9.0× 10.5 13.4× 0.33× 6.2 257× 315× 768 1200
137− 800 20.7× 15.7× 55.4 13.6× 0.18× 12.5 4097× 315× 768 28800

In the absence of known particle trajectories the accuracy of a given interpolation scheme
was tested based on how the particle position differed from that produced by a higher order
interpolation or a shorter time-step ∆t, given that position error is a function of both the
interpolation error and the time-step. The time-step from this point on will be quoted in terms
of Courant-Friedrichs-Lewy number CFL = U∆t/∆x, where U is the free stream velocity and
∆x is the computation cell length. In addition to this for an incompressible flow the divergence
∂ui/∂xi measured at the particle location can also be used as an indication of the accuracy of the
velocity gradients calculated for each particle. Figure 7 shows the difference in the divergence
obtained when calculating the velocity gradients at each particle from the gradient of a spline
fitted to the velocity field (as suggest by [14]) compared to fitting a separate spline to the
gradients of the velocity field at each grid point. Separate interpolation of each component
of the VGT provides a divergence that is typically five orders of magnitude smaller than that

Equation and after Poisson correction for the divergence. The position of all master particles
(centre of particle is contained in the node) and slave particles (part of the interpolation kernel
of a particle from an adjacent node) is stored for each computationally domain similar to that
used by Uhlmann [26]. With each update of the particle position a test is performed to see
whether a particle or it’s interpolation kernel crosses the boundary of it’s parent node, forcing
the transition of a slave to a master or the formation of a new slave, respectively.

The velocity gradient tensor (VGT) at each particle was evaluated by first determine
the velocity gradients at the centre of each cell using 2nd order central finite difference,
consistent with the methodology used for the Poisson correction. It was assumed that the error
associated with this scheme would be insignificant in comparison to the error introduction by
the interpolation (at least for lower order schemes), however this assumption is yet to be tested.
Each component of the VGT was then interpolated following the same procedure used for the
velocity field. Tests were also performed to see if the velocity gradients could be determined from
differentiation of the spline fits as suggested by Yeung and Pope [14], which does not require the
differentiation of the velocity field or additional interpolation and is therefore far more efficient.

A similar process was performed in the channel flow using both cubic (degree 4) B-splines
and the four point Hermite interpolation discussed in section 3. Particle positions and velocities
were similarly computed at each Runge-Kutta sub-step. Pseudo-spectral methods were used to
compute the velocity gradient at each grid point, from which each component of the velocity
gradients tensor was calculated at each particle location via same spline interpolation.

5. Results
To test the effect of Hermite spline order and the size of the time-step on particle trajectories
and the Lagrangian evolution of invariants of the VGT, a turbulent boundary layer DNS was
run over two moderate resolution grids whose dimensions and grid spacing are listed in Table 1.
Initial testing was perform on the smaller grid in order to test the basic implementation of the
code and interpolation before extending the code to more realistic simulations.

Table 1. Parameters of the zero-pressure gradient boundary layer DNS. Nx, Ny and Nz are the
grid sizes along the three axes, expressed for z in terms of collocation points, with ∆ representing
the corresponding resolutions at their coarsest points.

Reτ (Lx, Ly, Lz)/δ ∆x+,∆y+,∆z+ Nx, Ny, Nz Particles

126− 190 7.6× 9.0× 10.5 13.4× 0.33× 6.2 257× 315× 768 1200
137− 800 20.7× 15.7× 55.4 13.6× 0.18× 12.5 4097× 315× 768 28800

In the absence of known particle trajectories the accuracy of a given interpolation scheme
was tested based on how the particle position differed from that produced by a higher order
interpolation or a shorter time-step ∆t, given that position error is a function of both the
interpolation error and the time-step. The time-step from this point on will be quoted in terms
of Courant-Friedrichs-Lewy number CFL = U∆t/∆x, where U is the free stream velocity and
∆x is the computation cell length. In addition to this for an incompressible flow the divergence
∂ui/∂xi measured at the particle location can also be used as an indication of the accuracy of the
velocity gradients calculated for each particle. Figure 7 shows the difference in the divergence
obtained when calculating the velocity gradients at each particle from the gradient of a spline
fitted to the velocity field (as suggest by [14]) compared to fitting a separate spline to the
gradients of the velocity field at each grid point. Separate interpolation of each component
of the VGT provides a divergence that is typically five orders of magnitude smaller than that

2.5 x 106

! Cubic Hermite spline interpolation
! track every Δt+ =0.12     RK3 time step, CFL=0.4
! Seed T/NT interface 0.01 to 0.1 |!+

0 |�+

t+ = 0 to 7.8
2000 particles

1024

dy+ = �0.75

�dy+ = 2.6



Change in Flow topology at particle positions

t+ = 0 t+ = 7.8

! Calculate JPDF at tracked fluid particle locations
! Topologies as fluid moves past T/NT interface

SF/S

UN/S/S



Change in Flow topology at particle positions

t+ = 0 t+ = 38

SF/S

UN/S/S

! JPDF at tracked fluid particle locations



Conditional mean trajectories for particles

! trajectories in Q,R plane

CMT t+ = 0 to 0.12 CMT at interface



Change in Flow topology for individual particles

! Trajectories are consistent with vorticity evolution equation

CMT at interface
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Figure 1: Conditional averages on r. The overbars stand for conditionally averaged quantities. (a) Intensity
of the vorticity in 0.5 < x2/� < 1 (solid) and 1 < x2/� < 1.5 (dashed) for BL1( e), BL2(4) and
BL3( ) . (b) The budget terms of the intensity of fluctuation vorticity , T (4), S (⇧), D ( ) and V ( e),
in 1 < x2/� < 1.5 for BL2. (c) Interface velocity contributed by the budget terms shown in (b). Vertical
dashed lines in (b) and (c) indicate the bounds of the viscous layer. All the quantities are normalized by the
Kolmogorov’s scales.

vortex stretching

turbulent diffusion

viscous diffusion

dissipation



Summary

! Used critical point theory invariants of the VGT to investigate 
topological evolution of the flow in the vicinity of the T/NT interface

! Conditional mean trajectories from RHS of N.S at the interface
➡ indicates strong attraction towards UN/S/S for most locations
➡ Gain in enstrophy is associated fluid in region of weak gradients 

moving to regions of SF/S

! Particle trajectories show nett entrainment and similar changes in 
topology as predicted by CMTs

! Remains to examine correlation between increased enstrophy, 
velocity, position - further explore particle statistics
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