LTRAC

Lagrangian behaviour and enstropy evolution of fluid particles near the turbulent / non-turbulent interface of a turbulent boundary layer

Callum Atkinson, Paul Stegeman, Julio Soria

Laboratory for Turbulence Research in Aerospace and Combustion, Dept. of Mechanical and Aerospace Eng., Monash University, Australia

Jason Hackl, Guillem Borrell

School of Aeronautics, Universidad Politecnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain

Recent work - Y. Mizuno, O. Amili, J. Soria

Open Questions:

- What is the dynamical process by which irrotational fluid particles are entrained across the interface and gain enstrophy?
- Can we identify a structure, topology and time-scale associated with this process?
- What is the best means of investigating evolution associated with the T/NT interface?
 - 1. Compute Lagrangian evolution of VGT invariants

Open Questions:

- What is the dynamical process by which irrotational fluid particles are entrained across the interface and gain enstrophy?
- Can we identify a structure, topology and time-scale associated with this process?
- What is the best means of investigating evolution associated with the T/NT interface?
 - 1. Compute Lagrangian evolution of VGT invariants
 - 2. Track fluid particles across the interface

Flow Topology

Represent the topology of the T/NT interface in terms of critical point theory (Chong, Perry and Cantwell, 1990)

0

$$A_{ij} = \partial u_i / \partial x_j$$
$$\lambda_i^3 + P_A \lambda_i^2 + Q_A \lambda_i + R_A =$$
$$Q_A = -\frac{1}{2} A_{ij} A_{ji},$$
$$R_A = -\frac{1}{3} A_{ij} A_{jk} A_{ki}$$
$$A_{ij} = S_{ij} + W_{ij}$$
$$Q_S \propto \epsilon$$
$$Q_W \propto \omega \cdot \omega$$

JPDF of Q_A and R_A

→ similar to da Silva & Pereira (2008) at the interface of jet

Topological Evolution

- Represent the Lagrangian evolution of the flow in terms of the change in flow topology (Cantwell, 1992)
- Trace position in Qa, Ra plane as function of time - Lagrangian tracking
- Evaluate RHS of Navier-Stokes and Compute change in DQ_A/Dt, DR_A/Dt conditional on Q_A,R_A

$$\begin{aligned} \frac{\mathrm{D}Q_A}{\mathrm{D}t} &= -3R_A - A_{ik}H_{ki} \\ \frac{\mathrm{D}R_A}{\mathrm{D}t} &= \frac{2}{3}Q_A^2 - A_{in}A_{nm}H_{mi} \\ H_{ij} &= -\left(\frac{\partial^2 p}{\partial x_i \partial x_j} - \frac{\partial^2 p}{\partial x_k \partial x_k}\frac{\delta_{ij}}{3}\right) + \nu \frac{\partial^2 A_{ij}}{\partial x_k \partial x_k} \end{aligned}$$

LTRA

Conditional Mean Trajectories

log and wake region of TBL at $Re_{\theta} = 730$ to 1954 (Atkinson et al. 2012)

Conditional Mean Trajectories

Interface based on vorticity threshold 0.01 to $0.1|\omega^+|(\delta^+)^{-1/2}$

(Borrell et al.)

Interface based on vorticity threshold 0.01 to $0.1|\omega^+|(\delta^+)^{-1/2}$

(Borrell et al.)

Interface based on vorticity threshold 0.01 to $0.1|\omega^+|(\delta^+)^{-1/2}$

(Borrell et al.)

- Interface based on vorticity threshold 0.01 to 0.1 $|\omega^+|(\delta^+)^{-1/2}$
 - (Borrell et al.)

DNS TBL $\text{Re}_{\tau} \sim 600$ (Mizuno et al.) 18 fields

MONASH University

Interface based on vorticity threshold 0.01 to 0.1 $|\omega^+|(\delta^+)^{-1/2}$

(Borrell et al.)

DNS TBL $\text{Re}_{\tau} \sim 600$ (Mizuno et al.) 18 fields

MONASH University

Interface based on vorticity threshold 0.01 to $0.1|\omega^+|(\delta^+)^{-1/2}$

(Borrell et al.)

Turbulent boundary layer DNS (Simens et al 2009, Sillero et al. 2011)

Re_{τ}	$(L_x, L_y, L_z)/\delta$	$\Delta x^+, \Delta y^+, \Delta z^+$	N_x, N_y, N_z	Particles
137 - 800	$20.7\times15.7\times55.4$	$13.6\times0.18\times12.5$	$4097 \times 315 \times 1024$	2.5 x 10 ⁶

Cubic Hermite spline interpolation

track every Δt+ =0.12 RK3 time step, CFL=0.4

Turbulent boundary layer DNS (Simens et al 2009, Sillero et al. 2011)

Re_{τ}	$(L_x, L_y, L_z)/\delta$	$\Delta x^+, \Delta y^+, \Delta z^+$	N_x, N_y, N_z	Particles
137 - 800	$20.7\times15.7\times55.4$	$13.6\times0.18\times12.5$	$4097 \times 315 \times 1024$	2.5 x 10 ⁶

 $\overline{dy^+} = -0.75$

 $\sigma_{dy^+} = 2.6$

- Cubic Hermite spline interpolation
- track every Δt+ =0.12 RK3 time step, CFL=0.4

Seed T/NT interface 0.01 to 0.1 $|\omega_0^+|\delta^+$

Change in Flow topology at particle positions

Calculate JPDF at tracked fluid particle locations

Topologies as fluid moves past T/NT interface

Change in Flow topology at particle positions

JPDF at tracked fluid particle locations

Conditional mean trajectories for particles

trajectories in Q,R plane

CMT $t^+ = 0$ to 0.12

CMT at interface

individual particles

prticity evolution equation

CMT at interface

- Used critical point theory invariants of the VGT to investigate topological evolution of the flow in the vicinity of the T/NT interface
- Conditional mean trajectories from RHS of N.S at the interface
 - indicates strong attraction towards UN/S/S for most locations
 - Gain in enstrophy is associated fluid in region of weak gradients moving to regions of SF/S
- Particle trajectories show nett entrainment and similar changes in topology as predicted by CMTs
- Remains to examine correlation between increased enstrophy, velocity, position further explore particle statistics

MONASH University

Thank you for your attention

The Australian and European Research Councils are acknowledged for their financial support