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Abstract

We present a method for applying the Karhunen–Loève decomposition to systems with continuous symmetry. The tech-
niques in this paper contribute to the general procedure of removing variables associated with the symmetry of a problem,
and related ideas have been used in previous works both to identify coherent structures in solutions of PDEs, and to derive
low-order models via Galerkin projection. The main result of this paper is to derive a simple and easily implementable set
of reconstruction equationswhich close the system of ODEs produced by Galerkin projection. The geometric interpretation
of the method closely parallels techniques used in geometric phases and reconstruction techniques in geometric mechanics.
We apply the method to the Kuramoto–Sivashinsky equation and are able to derive accurate models of considerably lower
dimension than are possible with the traditional Karhunen–Loève expansion. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

KLE for symmetric systems. The Karhunen–Loève expansion (KLE), also known as theproper orthogonal
decompositionor the method ofempirical eigenfunctions, has been widely recognized as a useful tool both for
identifying and analyzing coherent structures in turbulent fluids, and for determining low-order models for complex
dynamical systems [9,20,22]. The principal idea behind the Karhunen–Loève (KL) method is that, given an ensemble
of data, one can find a basis of a given dimension that spans that data optimally, in theL2 sense.

Much of the literature on symmetry and the KL method addresses how to handlediscrete symmetries. These
discrete group considerations were first addressed by Sirovich [20], who suggested enlarging the data set by sym-
metry operations. These ideas were later applied by Park and Sirovich [19,21], who studied a Rayleigh–Bénard
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problem, respecting the dihedral groupD2k. Symmetrized data sets were further studied by Aubry et al. [2], who
showed that when the data is averaged over the symmetry group, the resulting Galerkin system is equivariant with
respect to the symmetry group. This is important because certain dynamical features are structurally stable only in
the presence of symmetries. Berkooz and Titi [4] generalize these results to the case of general, compact Abelian
groups; for discrete groups, they also suggest a means for computational savings, which was later demonstrated by
Smaoui and Armbruster [23] in a study of Kolmogorov flow. The complete symmetry group for the Kolmogorov
equations is the semidirect productD2k SO(2), but the methods in [23] focus on the discrete partD2k. Dellnitz
et al. [6] expand further on these ideas, considering non-Abelian finite groups, and presenting a modification to the
KL procedure which ensures that the Galerkin system retains precisely the same symmetry as the original system,
without introducing any new symmetries.

There has also been some work on how to handlecontinuous symmetrieswith the KL method. It is well known
that for systems with periodic or translational symmetry, the optimal basis consists of Fourier modes [20]. In systems
with more general continuous symmetry groups, more complicated sets of modes can arise [4], but are nevertheless
determined completely by harmonic analysis, and not from data. Such a basis normally gives no information about
coherent structures in the data, and furthermore, a reduced-order model based on Fourier modes must typically retain
many modes to adequately capture the dynamics. The references mentioned previously treat discrete symmetries in
an efficient way, but while recognizing the importance of continuous symmetry groups and their limitations, they
do not attempt to deal with these limitations.

Various methods have been developed to overcome these fundamental limitations of the KL method for systems
with continuous symmetries. Such systems typically exhibit traveling structures, and several techniques have been
proposed to handle them, notably those in Kirby and Armbruster [12], Armbruster et al. [1], and Glavaški [7,8].
In these works, symmetry is typically incorporated into the expansion, using for instance traveling KL modes.
Traveling structures have also been considered by Cutler and Stone [5] in the context of archetypal analysis, and by
Basdevant et al. [3], who present an efficient, general method for discretizing partial differential equations (PDEs)
using a traveling wavelet basis.

In the traveling frame, the KL eigenfunctions are no longer forced to be Fourier modes. As a result, information
about coherent structures can be obtained, and usually many fewer modes are required to accurately capture the
dynamics. More generally, it is expected that if one makes use of spatial and temporal structure when applying
the KL technique, then one can achieve significant computational savings. The simplest of these situations is the
efficient use of symmetry methods for continuous symmetry groups, which is the subject of the present paper.

Main result of this paper. The main result of the present paper is the development of a simple and computationally
efficient method for the reconstruction of traveling KL modes from their corresponding symmetry-reduced modes.
This result allows one to decouple the dynamics of the mode shapes from their location and to then determine the lo-
cations by a separate integration. We demonstrate the effectiveness of the procedure using the Kuramoto–Sivashinsky
equation.

Karhunen–Loève procedure. Given an ensemble of data (functions of space taken at various snapshots in time),
the KL method determines a basis set of orthogonal functions of space which span the data optimally, in theL2 sense.
More precisely, ifu(x, t) is a function of space and time, the KL method determines functionsϕn(x), n = 1, 2, . . . ,
such that the projection onto the firstN functions

û(x, t) =
N∑

n=1

an(t)ϕn(x) (1.1)

has a minimum error, defined by

E(‖u − û‖2). (1.2)
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Here,E(·) denotes time average, and‖·‖ denotes theL2 norm on functions of space. The functionsϕn are computed
by solving the integral equation∫

K(x, y)ϕ(y) dy = λϕ(x), (1.3)

where the kernelK(x, y) = E(u(x, t)u(y, t)). The functionsϕn are called theKL eigenfunctions(also calledPOD
modes, or empirical eigenfunctions).

If the functionu(x, t) is the solution to a PDE which has translational symmetry, then our method considers,
instead of (1.1), the expansion

û(x, t) =
N∑

n=1

an(t)ϕn(x + c(t)), (1.4)

which is just a spatial translation of (1.1) by the amountc(t). If the functionu consists of a traveling structure, for
instance, this expansion can be interpreted as viewing the data in the frame of reference of the traveling structure. If
a Galerkin projection is to be performed on the governing PDE using the new expansion (1.4), then it is necessary
to specify the evolution of the symmetry variablec(t).

Reconstruction. The main contribution of this work may now be stated more precisely: we provide a simple,
general method for findingreconstruction equationsfor the symmetry variablec(t). The terminology “reconstruction
equations” is borrowed from the geometric phase literature, as the geometric interpretation of the method closely
resembles similar techniques in that literature (see, e.g. [15,16] and references therein). In our work as well as in
the geometric phase literature, one of the main ideas is that one gets well-defined dynamical equations on the phase
space modulo the symmetry group (these are called thereduced equationson thereduced phase space) and the
problem is then how to put back into the dynamics the missing group, or phase variables. These additional equations
are usually called thereconstruction equations.

Outline of the paper. First, in Section 2, we illustrate our method of symmetry reduction and reconstruction on
a PDE that is equivariant under one-dimensional translations. The geometric interpretation of the method is then
discussed in Section 3, and indicates how the method may be generalized to arbitrary continuous symmetry groups.
In Section 4, we apply the method to the Kuramoto–Sivashinsky equation, which was studied in [12], and we derive
low-order models which capture the dynamics over parameter ranges which are poorly modeled by the traditional
methods used in [12].

2. Reduction and reconstruction: translational symmetry

First, we describe the procedure we use for determining the shift amountc(t) in the expansion (1.4), essentially
the position of the traveling structure. The shifting procedure we use, calledtemplate fitting, was introduced by
Kirby and Armbruster [12] as an algorithm for preprocessing data before performing KLE. Template fitting was
also used by Cutler and Stone [5] in the related context of archetypal analysis.

A similar but distinct shifting procedure, calledcentering, was introduced by Glavaški et al. [8]. This work was the
first to address thedynamicsof the projected system (1.4) (i.e., the system of ODEs obtained by Galerkin projection
onto the traveling modes). In [7,8], attention was focused on PDEs of the form

ut + ωux = D(u), (2.1)

whereD(·) is a nonlinear spatial differential operator. For this case, solutions typically propagate with speedω, so
the shift variablec(t) was chosen to satisfẏc(t) = −ω. This is an example of a simple reconstruction equation; the
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purpose of the present section is to developsimplereconstruction equations for more general translation-invariant
PDEs than the advection equations considered in [7,8].

Either template fitting or centering may be used with the reduction techniques presented in this section, but here
we focus on template fitting, which generalizes, in our view, more naturally to arbitrary symmetry groups. Centering
works well for some problems, but for other problems it can lead to complicated reconstruction equations and can
even fail catastrophically. We discuss centering and its limitations in Appendix A.

2.1. Template fitting

The strategy in template fitting is to shift the data so that at each time the data matches up best with a preselected
template. Letf : R→ R be a 2π -periodic function, sof (x) = f (x+2π) for all x. Letf0(x) be a fixed 2π -periodic
function, which will be referred to as thetemplate. In [12], the shift amountc is defined to be the solution to the
problem

min
c

∫ 2π

0
[f (x − c) − f0(x)]2 dx, (2.2)

where the minimization is overc in the range 0≤ c < 2π . Note that solving (2.2) forc is equivalent to solving

max
c

〈f (x), f0(x + c)〉, (2.3)

where〈·, ·〉 denotes the standard inner product onL2[0, 2π ], defined by

〈f, g〉 =
∫ 2π

0
f (x)g(x) dx. (2.4)

If c solves (2.3), then assuming differentiability, we have a critical point

∂c〈f (x), f0(x + c)〉 = 0, (2.5)

which is equivalent to

〈f (x), f ′
0(x + c)〉 = 0, i.e., 〈f (x − c), f ′

0(x)〉 = 0. (2.6)

We shall use Eq. (2.6) to determine the shift amountc when template fitting is used. This characterization in terms
of the inner product leads to a very nice geometric interpretation of template fitting, as we will see in subsequent
sections.

2.2. Galerkin projection

Consider a PDE of the form

∂tu(x, t) = D(u) (2.7)

for 0 ≤ x ≤ 2π , with periodic boundary conditions and appropriate initial conditions, whereD(·) is a nonlinear
spatial differential operator that isequivariant under spatial translations; i.e., for each periodic functionv(·) and
each real numberc,

D(Sc[v]) = Sc[D(v)],
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whereSc[v](x) = v(x+c) is theshift operatoron periodic functions. Consider the functionû defined by a truncated
series expansion

û(x, t) =
N∑

n=1

an(t)ϕn(x) + ū(x), (2.8)

whereϕn are known orthonormal periodic functions (for us, these will be the KL eigenfunctions), andū is a known
periodic function (for us this will be the mean field of the shifted solution). To find an approximate solution to Eq.
(2.7), we consider

u(x, t) = û(x + c(t), t), (2.9)

wherec(t) is a shift amount. Ifu(x, t) is thought of more generally as an arbitrary set of data, this procedure can
be thought of as preprocessing the data, to get a shifted version of the data,û(x, t), and then performing KLE on
the shifted data. Inserting the expression (2.9) into the PDE gives

ût (x + c, t) + ûx(x + c, t)ċ = D(û(x + c, t)). (2.10)

Note that from (2.8), we have

ût (x, t) =
N∑

n=1

ȧn(t)ϕn(x), (2.11)

ûx(x, t) =
N∑

n=1

an(t)ϕ
′
n(x) + ū′(x). (2.12)

Multiplying (2.10) byϕj (x + c), integrating from 0 to 2π, and using the equivariance ofD gives

ȧj = 〈D(û), ϕj 〉 − ċ〈ûx, ϕj 〉, j = 1, . . . , N. (2.13)

This system of ordinary differential equations (ODEs) does not depend onc, but it does depend oṅc, so to close
the system we need an additional (reconstruction) equation to determineċ(t).

2.3. Reconstruction equation

If we choose a template functionu0(x) and define the symmetry variablec(t) by template fitting, as in (2.6), then
c(t) satisfies

〈u(x − c, t), u′
0(x)〉 = 0. (2.14)

Differentiating with respect tot gives

〈ut (x − c, t), u′
0(x)〉 − 〈ux(x − c, t), u′

0(x)〉ċ = 0. (2.15)

Solving forċ, substitutingu(x, t) = û(x+c, t), and using equivariance ofD, we obtain thereconstruction equation

ċ = 〈D(û), u′
0〉

〈ûx, u
′
0〉

. (2.16)

This equation may be used as a closure for the system (2.13) when template fitting is used. An analogous equation
may be obtained when centering is used to define the shift amount, and is discussed in Appendix A.
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2.4. Summary of the method

The method consists of two main steps.
1. Computing the reduced KL eigenfunctions. Given an ensemble of datau(x, t), one first chooses a templateu0(x),

and applies template fitting, forming the shifted dataû(x, t) = u(x+c(t), t). Here,c(t) is determined by applying
Eq. (2.6) at each timet . The time averagēu(x) = E(û(x, t)) is then computed, and the symmetry-reduced KL
eigenfunctionsϕn are found by computing the standard KLE for the zero-mean shifted dataû(x, t) − ū(x).

2. Forming the reduced model. The dynamics of̂u(x, t) = ∑N
n=1an(t)ϕn(x) + ū(x) is given by

ȧj = 〈D(û), ϕj 〉 − 〈D(û), u′
0〉

〈ûx, u
′
0〉

〈ûx, ϕj 〉, (2.17)

wherej = 1, . . . , N (this equation is independent ofc andċ), and then the solution is given (approximately for
finite N and exactly asN → ∞) by u(x, t) = û(x + c(t), t), where

c(t) =
∫ t

0

〈D(û(x, s)), u′
0(x)〉

〈ûx(x, s), u′
0(x)〉 ds. (2.18)

Note that from (2.14),̂u(x, t) belongs to a restricted class of functions satisfying the orthogonality condition

〈û(x, t), u′
0(x)〉 = 0. (2.19)

The geometric meaning of this condition will be discussed in Section 3.

3. Geometric interpretation

In this section, we discuss the geometric interpretation of the above procedures, and show how the method may
be generalized to arbitrary symmetry groups. Examples where more complicated symmetry groups arise include
waves on a surface, where the symmetry could be the special Euclidean group SE(2) if the surface is a plane, the
circleS1 if the surface is a disk, or the special orthogonal group SO(3) if the surface is a sphere. Other interesting
examples include rotating flexible structures, such as a tumbling space station, where the symmetry is again the
rotation group SO(3).

3.1. Orthogonality condition

In Section 2.2, we wrote the solutionu in terms of the spatial translation of a functionû, namelyu(x, t) =
û(x+c(t), t). When the translation amountc(t) is defined by (2.14) then̂u(x, t) satisfies the orthogonality condition

〈û, u′
0〉 = 0, (3.1)

whereu0(x) is the chosen template. Since this relation holds at any timet , this in turn implies that̄u, the mean
field of the shifted solution, is also orthogonal tou′

0, and hence each of the KL eigenfunctionsϕn is also orthogonal
to u′

0.
In writing the solutionu(x, t) as a group translation of̂u(x, t), and solving for the dynamics of̂u, we have

projected the solutionu(x, t), which lies in the set of all functions of space and time, onto a restricted set of
functionsû which are orthogonal tou′

0.
This procedure has the following general geometric interpretation. Consider a dynamics problemu̇ = X(u) for

a dynamical variableu, lying in a spaceM, and assume that there is a continuous symmetry groupG that acts on
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M. We will assume thatM is a linear inner product space for simplicity and that the group action is linear. (The
constructions hold more generally, but this is a simple case that meets our present needs.) Assume that the dynamics
is given by an equivariant dynamical system onM.

In the above examples,M is the space of periodic functions, the dynamics is given by our evolution equation (i.e.,
X is the operatorD), the inner product is theL2 inner product andG the group of spatial translations. Equivariance
just means that the equations and boundary conditions are translation invariant.

Whenever one has equivariant dynamics onM, one gets a well-defined dynamical system on thequotient(or
orbit) spaceM/G which consists, in our case, of the space in which two functions related by a translation are
identified. WhenM is an inner product space and the group action is by isometries, there is a natural way to identify,
at least locally in function space, the quotient space with a subspace ofM; namely we pick a pointu0 ∈ M and
look at the affine space through the pointu0 orthogonal to the group orbit through that point.1 We call this affine
space asliceand denote it bySu0.

In our case, the orthogonality condition defining the spaceSu0 is exactly the condition in Eq. (3.1). Indeed,
the tangent space to the group orbit is the one-dimensional space (sinceG = R is one-dimensional) given by
differentiating the translation of the functionu0 by an amountc with respect toc at the identity,c = 0. This is, of
course, just the functionu′

0. The affine spaceSu0 is then defined as

Su0 = {u0 + û|〈û, u′
0〉 = 0} (3.2)

or, equivalently,

Su0 = {û|〈û, u′
0〉 = 0}, (3.3)

since〈u0, u
′
0〉 = 0 (this identity holds for all periodic functionsu0).

In the more general theory, assuming that the pointu0 has no isotropy (in our case this means that the function
u0 is not symmetric with respect to any nontrivial translations by amounts strictly between 0 and 2π ), the map that
identifies an element ofSu0 with its equivalence class inM/G is a local diffeomorphism. One can also identify
(modulo points with isotropy)M, at least locally, with the product spaceM/G × G, i.e., with Su0 × G. The
identification takes an element(r, g) ∈ Su0 × G and maps it to the element ofM given by the action ofg on r.

One wants now to reconstruct the dynamics onM from the dynamics onM/G and the reconstruction equation
provides the missing dynamics for the group elements. This is exactly what we are doing here.

In the reconstruction and geometric phase literature in mechanics, one often exploits an inner product structure
as well via aconnection, and in that theory the reconstruction equations have the same flavor as those we have
obtained here. In Section 3.2, we give a reconstruction equation in a simplified setting appropriate to our needs and
give the reconstruction equation using connections in Appendix B.

3.2. Reconstruction equation from slices

The general procedure is indicated in Fig. 1. Consider a dynamical system which evolves in a spaceM, and which
admits a continuous symmetry groupG. In particular, foru(t) ∈ M, u(t) satisfies

u̇ = X(u), (3.4)

where the differential operatorX is equivariant under the action ofG. (This corresponds to the operatorD in
preceding sections.)

1 See, e.g. [17] for an elementary discussion of these group theoretic concepts.
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Fig. 1. The geometry of the reconstruction equation.

To derive reconstruction equations, we begin by generalizing the orthogonality condition (3.1). The above dis-
cussion of the geometric viewpoint suggests a natural way of generalizing this condition. We begin by choosing a
pointu0 ∈ M (the template), and constructing the tangent space to the group orbit, defined by

Tu0Orb(u0) = {ξM(u0)|ξ ∈ g}, (3.5)

whereg is the Lie algebra ofG, andξM : M → TM (a vector field onM) denotes the infinitesimal generator of the
action corresponding toξ . Then, the sliceSu0 consists of all functionsr (corresponding tôu previously), which are
orthogonal to this tangent space, so that

Su0 = {u0 + r|〈r, ξM(u0)〉 = 0 ∀ξ ∈ g}. (3.6)

Now we identify the quotient space (locally in the spaceM) with the slice, as explained above. In other words, we
definer(t) ∈ Su0 by translatingu(t) until it hits the slice. The general theory (see also Appendix B) guarantees that
the functionr inherits well-defined dynamics. We verified this directly for our example in Section 3.1. The resulting
quotient dynamics will be denoted

ṙ(t) = XSu0
(r) (3.7)

(in the setting of Appendix B, this is denoted as [X]). We now start with a solution of the quotient dynamicsr(t)

and attempt to reconstruct the solutionu(t).
To do this, we seek a group elementg(t) such thatu(t) = g(t)r(t) (the group action is denoted by concatenation)

satisfies the given Eq. (3.4). To derive the equation forg(t), substituteu(t) = g(t)r(t) into u̇(t) = X(u(t)) to give
an equation iṅr andġ which we denote

ġr + gṙ = X(gr). (3.8)

(Appendix B gives a more general formula.) Using (3.7) and equivariance ofX (i.e., X(gr) = gX(r)), (3.8) is
equivalent to

g−1ġ · r + XSu0
(r) = X(r). (3.9)



C.W. Rowley, J.E. Marsden / Physica D 142 (2000) 1–19 9

As shown in Appendix B, the precise way to interpret this equation is as follows. Letξ(t) = g(t)−1ġ(t) (left
translation ofġ(t) to the identity), which is a curve in the Lie algebrag. The first term of the left-hand side of (3.9)
is exactly(ξ(t))M(r(t)).

Consider now the orthogonal projection mapP : M → Su0. The orthogonal projection to the complement,
namely Id− P, takes a vectorv in M and produces a vector tangent to the group orbit throughu0. We now apply
Id − P to Eq. (3.9). Since, by construction,(Id − P)XSu0

(r(t)) = 0, we get

(Id − P)(ξ(t) · r(t)) = (Id − P)X(r(t)), (3.10)

which may be regarded as an algebraic equation to be solved forξ . This gives thereconstruction equation, denoted
by

ξ = ξ(r), (3.11)

which then yields a differential equation forġ.
The equation for the dynamics ofr itself is then obtained from (3.9)

ṙ = XSu0
(r) = X(r) − ξ(r) · r. (3.12)

Special case: one-dimensional translational symmetry. We now show that the template reconstruction equation
(2.16) is indeed a special case of Eq. (3.10), whenG is the group of one-dimensional translations or rotations, so
the Lie algebra is simplyg = R.

In this case, the group actions and generators are given by

(gu)(x, t) = u(x + g, t), (ξ · u)(x, t) = ξux(x, t),

whereg ∈ G andξ ∈ g. The sliceSu0 is defined by Eq. (3.3), and the orthogonal projection to the complement of
the slice is given by

(Id − P)(v) = 〈v, u′
0〉

〈u′
0, u

′
0〉

u′
0.

In our case,ξ = ċ, so (3.10) becomes

ċ
〈ûx, u

′
0〉

〈u′
0, u

′
0〉

u′
0 = 〈D(û), u′

0〉
〈u′

0, u
′
0〉

u′
0,

which, after taking an inner product withu′
0, agrees with (2.16). Substituting this equation into (3.12) gives, as

before, the dynamics of̂u itself.

4. Application: the Kuramoto–Sivashinsky equation

We now apply the symmetry reduction procedure described above to a sample problem, the Kuramoto–Sivashinsky
(KS) equation

ut + uux + uxx + νuxxxx = 0 (4.1)

for 0 ≤ x ≤ 2π , with periodic boundary conditions. Several versions of the KS equation have been studied;
perhaps the most common form is

vτ + 4vxxxx + α(vxx + 1
2v2

x) = 0, (4.2)
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which is equivalent to (4.1) with

u = vx, t = ατ, ν = 4/α. (4.3)

The dynamics of (4.2), for a wide range of the parameterα, have been extensively investigated by Hyman et al. [10],
and traditional KLE and Galerkin projection were applied to this form of the equation by Kirby and Armbruster
[12]. One reason the form (4.2) is often preferred in the dynamics literature is that it has greater symmetry, since
(4.2) is O(2)-equivariant, while (4.1) is only SO(2)-equivariant. However, despite the loss of symmetry, the form
(4.1) has several nice features. First, it bears closer resemblance to other model problems of fluid dynamics, such
as Burger’s equation. In addition, the spatial average

um(t) :=
∫ 2π

0
u(x, t) dx

remains constant in time, while for the form (4.2) the corresponding mean quantity is not constant, and simulations
of this equation typically add a correction term to keep the mean value from growing unbounded (see, e.g. [10]).

Here, we begin by computing an accurate numerical solution to (4.1) for several different values of the parameter
ν. Details of the computation are included in Section 4.1 along with the Galerkin ODEs and reconstruction equations
for the KS equation. We then apply template fitting to the data, compute the KL eigenfunctions from the shifted data,
and finally solve the low-order system, and compare solutions of the reduced system to those of the full system.

4.1. Numerical details

We first compute a highly accurate solution to (4.1) using a 20-mode (complex) Fourier–Galerkin representation,
and using a Crank–Nicholson scheme to advance the linear terms and second-order Adams–Bashforth to advance
the nonlinear terms. Because of the sensitive dependence on initial conditions, all computations were performed in
double precision, and through a careful study of convergence in space and time, we determined that 20 modes and
a timestep of 10−4 were sufficient to accurately compute a solution for the parameter values we investigated.

We then shift the data, using template fitting, and in our examples we take the template to be the first snapshot
(i.e.,u0(x) = u(x, t0)). We subsequently subtract the mean field of the shifted data

ū(x) = 1

t1 − t0

∫ t1

t0

û(x, t) dt, (4.4)

wheret0 andt1 are the times of the first and last snapshots used, and then compute the standard KL eigenfunctions
ϕn(x) for the shifted, zero-mean data. Because the computational data is given in terms of Fourier modes, the KL
eigenfunctions are also computed in terms of their Fourier coefficients, using the method of snapshots (see, e.g.
[20]).

Once we have the spatial modesϕn(x), we may apply the Galerkin projection discussed in Section 2.2. Taking

D(u) = −uux − uxx − νuxxxx, (4.5)

and writingu as the KLE

u(x, t) =
N∑

n=1

an(t)ϕn(x + c(t)) + ū(x + c(t)), (4.6)

the Galerkin projection of Section 2.2 yields the system of ODEs
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Fig. 2. Contour plot of solution of full simulation forα = 84.25; same solution after template fitting.

ȧk = −
N∑

m,n=1

bkmnaman −
N∑

n=1

cknan − dk −
N∑

n=1

eknanċ − fkċ (4.7)

for k = 1, . . . , N , where

bkmn = 〈ϕnϕ
′
m, ϕk〉, ckn = 〈ūϕ′

n + ū′ϕn + ϕ′′
n + νϕ′′

n
′′, ϕk〉, dk = 〈ūū′ + ū′′ + νū′′′′, ϕk〉,

ekn = 〈ϕ′
n, ϕk〉, fk = 〈ū′, ϕk〉,

are constants which may be computed before solving (4.7). The derivatives in these coefficients may be computed
exactly (without finite differencing), since the KL modes, mean field, and template are all known in terms of their
Fourier coefficients. To close this system, we use the reconstruction equation (2.16), which takes the form

ċ = −
∑N

m,n=1pmnaman + ∑N
n=1qnan + r∑N

n=1snan + t
, (4.8)

where

pmn = 〈ϕnϕ
′
m, u′

0〉, qn = 〈ūϕ′
n + ū′ϕn + ϕ′′

n + νϕ′′
n

′′, u′
0〉, r = 〈ūū′ + ū′′ + νū′′′′, u′

0〉,
sn = 〈ϕ′

n, u
′
0〉, t = 〈ū′, u′

0〉.
We solve this reduced system using a fourth-to fifth-order variable-timestep Runge–Kutta method, with an error
tolerance of 10−6, and compare the solution of the reduced system to the solution of the full system, obtained from
the 20-complex-mode Fourier–Galerkin procedure.

4.2. Full simulations and template fitting

We study numerical solutions of the KS equation for two different values of the parameterα = 84.25 andα = 87,
whereν = 4/α is the parameter in (4.1). This regime has been studied extensively in [10], and low-order models
were derived in [12]. For 72< α < 89, there exists a strange2 fixed point which is globally attracting. Solutions in
the vicinity of the fixed point consist of beating waves, which are stationary forα < 86 and traveling forα > 86.

Fig. 2 shows the contour plot of the beating wave forα = 84.25. The contour levels for all plots are between
−10 and 10, equally spaced at intervals of 5.0. Also shown is the solution after template fitting has been performed

2 As coined in [10], this fixed point is called “strange” because it is not a cellular state, and has a broad Fourier spectrum. This should not be
confused with the notion of a strange (i.e., chaotic) attractor encountered in nonlinear ODEs.
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Fig. 3. Contour plot of solution of full simulation forα = 87; same solution after template fitting.

(i.e., the left plot showsu(x, t), and the right plot showŝu(x, t) = u(x − c, t)). As stated earlier, in all cases the
templateu0 was chosen to be the first snapshot.

Fig. 3 shows the solution before and after template fitting forα = 87. Note that the beating wave is now traveling
in space, and the template fitting removes this translation. The initial condition for all runs is the same as that used
in [12]:

u(x, 0) = − sin(x) + 2 cos(2x) + 3 cos(3x) − 4 sin(4x),

and the transient solution is computed untilt = 120, by which time a relative equilibrium has been reached.
Solutions were computed fromt = 120 tot = 140, but for clarity, Figs. 2 and 3 show the solution only tot = 130.

4.3. Reduced-order simulations

KL modes were determined from the above data by taking 400 snapshots betweent = 120 andt = 140. The
reduced equations (4.7) and (4.8) were then computed, and solved keeping various numbers of modes. We found
that keeping three modes was sufficient to capture the qualitative behavior for either parameter value. When four
or more modes are used, the solution of the reduced system is virtually indistinguishable from the solution of the
full simulation.

Recall that without the symmetry reduction methods discussed here, the optimal modes are Fourier modes. If
Fourier modes are used, eight complex modes (or 16 real modes) are required to capture qualitatively correct
dynamics, for either value ofα shown here. (When fewer than eight Fourier modes are used, either the oscillations
die out completely, or the solution blows up.) Figs. 4 and 5 show the 3-mode solution of the reduced equations along
with the solution from the 8-mode (complex) Fourier–Galerkin simulation.

We remark that in Kirby and Armbruster [12], a 3-mode model was obtained for a regime where solutions do not
travel (α = 72), but no low-order models were attempted forα = 87, where the beating wave is traveling. Also, in
our simulations of the reduced system we experienced none of the stability problems reported in [12].

5. Discussion

We have presented a technique for combining symmetry reduction techniques with the KL method. The main
result has been to derive reconstruction equations which specify the evolution of the symmetry variablec(t). For the
simple case of one-dimensional translational symmetry, the reconstruction equation is particularly simple, and we
have generalized our approach to an abstract setting, which applies to a large class of continuous symmetry groups.
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Fig. 4. Contour plot of solution of 3-mode KL–Galerkin system forα = 84.25; solution of corresponding 8-mode (complex) Fourier–Galerkin
system.

We applied the method to the KS equation, and were able to derive models of much lower order than were
previously possible. Our method is particularly effective when solutions are traveling waves, in which case the
standard KLE gives Fourier modes. For the example shown, the standard method requires at least eight complex
Fourier modes (16 degrees of freedom) to capture qualitatively correct dynamics, while our method requires only
three modes.

In recent years, there have been significant developments in incorporating symmetry into the KLE, mostly
focusing on discrete symmetry groups (e.g. [2,23]). The method presented in this paper for continuous groups nicely
complements these methods for discrete groups, and in fact may permit them to be used even more effectively on
problems with both continuous and discrete symmetry.

Another structure that is important to take into account in some situations is the mechanical structure. For elastic
systems this structure is used in Lall et al. [13]; similar things should also be of interest in fluid mechanics. It would
be natural to extend the reduction procedures here to similar ones for mechanical systems that exploit both reduction
theory for mechanical systems and variational symplectic integration methods such as the Newmark algorithm (see
[11,18] for the current state of affairs in these subjects and for further references).

Fig. 5. Contour plot of solution of 3-mode KL–Galerkin system forα = 87; solution of corresponding 8-mode (complex) Fourier–Galerkin
system.
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Appendix A. Centering: an alternative shifting procedure

This appendix discussescentering, a shifting procedure which may be used in place of template fitting. The
method was introduced in [7,8], where it was applied to models of rotating stall cells in compressors.

We define acenterof a 2π -periodic functionf (x) to be a value ofc ∈ [0, 2π) that satisfies

∫ π

0
[f (x − c)]2 dx =

∫ 2π

π

[f (x − c)]2 dx. (A.1)

This definition of the center doesnot correspond to the definition of center in [7,8], but corresponds rather to the
final shift value reached after applying the iteration described in [7,8].3 If c satisfies (A.1), we say that the new
functionfc(x) = f (x − c) is centered.

A.1. Reconstruction equation: centering

Consider the translationally invariant PDEu̇ = D(u), as before, and now definec(t) such that

∫ π

0
[u(x − c, t)]2 dx =

∫ 2π

π

[u(x − c, t)]2 dx (A.2)

for all t . Differentiate this relation with respect tot , to give

∫ π

0
2u(x − c, t)(ut (x − c, t) − ux(x − c, t)ċ) dx

=
∫ 2π

π

2u(x − c, t)(ut (x − c, t) − ux(x − c, t)ċ) dx. (A.3)

Letting û(x, t) = u(x − c, t) and noting thatux(x, t) = ûx(x + c, t) andut (x, t) = D(u(x, t)), this becomes

∫ π

0
û · (D(û) − ûx ċ) dx =

∫ 2π

π

û · (D(û) − ûx ċ) dx, (A.4)

where we have used equivariance ofD. Solving forċ, we have

ċ =
∫ π

0 ûD(û) dx − ∫ 2π

π
ûD(û) dx∫ π

0 ûûx dx − ∫ 2π

π
ûûx dx

. (A.5)

3 The centerc defined in [7,8] satisfies
∫ c

0 |f |2 dx = ∫ 2π

c
|f |2 dx. One then sets up an iteration procedure to produce ashiftd which corresponds

to ourc.
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This equation, which we refer to as thecentering reconstruction equation, may be used as a closure for the system
(2.13), whenc(t) is determined by centering (i.e., defined by (A.2)). Defining thecentering bilinear functional
〈〈·, ·〉〉c : L2 × L2 → R by

〈〈f, g〉〉c =
∫ π

0
f (x)g(x) dx −

∫ 2π

π

f (x)g(x) dx, (A.6)

we may rewrite (A.5) in the concise form as

ċ = 〈〈D(û), û〉〉c
〈〈ûx, û〉〉c , (A.7)

which closely resembles the form of the template fitting reconstruction equation (2.16).
Note that whenu(x, t) = û(x + c, t) andc(t) is determined by centering, thenû(x, t) belongs to a restricted

class of “centered” functions satisfying

〈〈û, û〉〉c = 0, i.e.,
∫ π

0
[û(x, t)]2 dx =

∫ 2π

π

[û(x, t)]2 dx (A.8)

for all t . This space of centered functions is the analog of the sliceSu0 defined in Section 3.1 for the template fitting
reduction procedure.

A.2. Limitations

Centering works well for many problems, but for certain problems the method can fail catastrophically. The
problem is that the derivation of the reconstruction equation in Section A.1 requires that the shift amountc(t)

is differentiable. When centering is used to definec(t), this amount can change discontinuously, even when the
solutionu(x, t) varies smoothly in time. We illustrate this process with the following example.

Consider the solution of the KS equation, forα = 84.25, as discussed in Section 4.2. Part of the solution is
plotted in Fig. 6, both before and after centering is applied (i.e., the left plot showsu(x, t), and the right plot shows
û(x, t) = u(x + c, t), wherec(t) is given by (A.2)). As the beating wave oscillates, the center location jumps back
and forth discontinuously. This jumping is an inherent flaw in the method, and not dependent on the algorithm
which finds the (possibly nonunique) location of the center, as we now show.

For a given functionu(x, t), possible center locations (i.e., solutions of (A.2)) correspond to zeros of the function

Ft(c) = 〈〈u(x − c, t), u(x − c, t)〉〉c.

Fig. 6. Contour plot of solution of full simulation forα = 84.25; same solution after centering — catastrophic failure.
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Fig. 7. Plot ofFt (c) at four different times (t = 120.00, 120.05, 120.10, and 120.30). Note how zeros ofFt (c) must change discontinuously as
t varies.

Note thatFt(c + π) = −Ft(c) for all c, so we need only search for zeros in the range 0≤ c < π . Fig. 7 shows the
functionFt(c) at several different times, for the solutionu plotted in Fig. 6.

There is a unique solution ofFt(c) = 0 forc at the initial time. At the next time shown in Fig. 7, multiple solutions
arise, but we may still follow the original solution. At the third time, the original solution disappears, and we are
forced to jump discontinuously to a new (unique) root. At the final time shown, multiple roots arise once again, and
the process repeats itself.

It is possible that this difficulty may arise with template fitting as well, in fact, a straightforward application of the
implicit function theorem shows that this jumping is possible with template fitting at pointsv∈Su0, where the group
orbit Orb(v) is tangent to the sliceSu0. (In the one-dimensional example, for instance, this is when the denominator
in the reconstruction equation (2.16) becomes zero.) Locally, in a neighborhood of the templateu0, this situation is
guaranteed not to occur, as long as the action is locally free. However, if the dynamics carry the solution far from
the template, this difficulty may arise. In this case, one might choose a new template near the new dynamics, and
treat the different slices as local coordinate charts for the quotient spaceM/G.

Appendix B. General reconstruction equation

In this appendix, we give an alternative abstract reconstruction equation in the setting of general dynami-
cal systems with symmetry. When one has the additional structure of a mechanical system with conservation
laws one can refine this procedure by taking the conservation law into account (see, e.g. [15,18] for this
theory).

B.1. Equivariant dynamical systems

The general theory starts with a manifoldM with the (left) action of a Lie groupG. The Lie algebra ofG is
denotedg. We denote the action of a group elementg ∈ G on a pointu ∈ M by 8g(u) = g · u. We consider an
equivariant dynamical systeṁu = X(u) onM. We assume that the action ofG is free and proper so that the quotient
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or orbit spaceM/G is a smooth manifold. We denote the projection to the quotient byπ : M → M/G; u 7→ [u],
where [u] = {g · u|g ∈ G} denotes the equivalence class ofu.

Choosing a representativeu of the class [u], the tangent space toM/G at a point [u] is isomorphic to the quotient
spaceTuM/(ξ · u). Here,ξ · u = {ξM(u)|ξ ∈ g} is the tangent space to the group orbit through the pointu, where
ξM(u) denotes the infinitesimal generator of the group action associated with the Lie algebra elementξ ∈ g. The
isomorphism mentioned is induced by the tangent to the projection map:T π : TM → T (M/G).

Because the vector fieldX is equivariant, it induces a vector field [X] on the quotient space with the property
that [X]([u]) = Tuπ · X(u) for all u ∈ M. The flowϕt of [X] is related to the flowFt of X by π ◦ Ft = ϕt ◦ π .

B.2. Reconstruction

The reconstruction problem is the following. Given an integral curve [u](t) = ϕt ([u](0)) of the quotient dynamics
and a pointu0 such that [u0] = [u](0), determine the solutionu(t) with initial conditionu0.

Connections. To carry out this we need some additional structure, namely that of a connection. Recall that a
(principal) connection is a Lie algebra valued one formA : TM → g with the following properties:
1. A(ξM(u)) = ξ for all ξ ∈ g andu ∈ M.
2. A is equivariant (with respect to the given action onM and the adjoint action ong), i.e., for a tangent vector

vu ∈ TuM,

A(g · vu) = Adg(A(vu)),

whereg · vu denotes the tangent action ofG onTM.
3. The horizontal space Horu = kerA|TuM is a complement to the vertical spaceξ · u.
Given a connection, one has a horizontal and vertical decomposition of any vectorvu ∈ TuM as follows:

vu = Veru(vu) + Horu(vu),

where Veru(vu) = (A(vu))M(u) and Horu(vu) = vu − Veru(vu).
If one has an equivariant distribution of horizontal spaces, then these properties uniquely determine a connection.
For example, if we can writeM = S × G and the group action is by left translation on the second factor alone,

then a connection is given by declaring the first factor to be horizontal and the second factor to be vertical.
The reconstruction equation. The reconstruction equation is based on a general formula for the derivative of a

curve of the formu(t) = g(t) · z(t), whereg(t) is a curve inG andz(t) is a curve inM. This formula is the
following:

u̇(t) = (Adg(t)ξ(t))M(u(t)) + g(t) · ż(t) = g(t) · [(ξ(t))M(z(t)) + ż(t)],

whereξ(t) = g(t)−1 · ġ(t) is a curve in the Lie algebra. This formula is proved in, e.g. [17].
Given the integral curve [u](t) of [X] in M/G, we choose a convenient curveũ(t) with the property that [̃u(t)] =

[u](t) andũ(0) = u0. We then write our solution in the formu(t) = g(t)ũ(t). By the preceding display, we can
write

u̇(t) = g(t) · [(ξ(t))M(ũ(t)) + ˙̃u(t)].

We now use the fact thatu(t) should be an integral curve ofX and the fact thatX is equivariant to get

X(ũ(t)) = (ξ(t))M(ũ(t)) + ˙̃u(t).
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Apply the connection to both sides of this equation

A(X(ũ(t))) = ξ(t) +A( ˙̃u(t)).

Solving forξ gives the desiredreconstruction equation:

g(t)−1 · ġ(t) = A(X(ũ(t) − ˙̃u(t))), (B.1)

which we regard as a differential equation for the unknown curveg(t) to be solved with the initial condition
g(0) = Id. With this solution, the desired integral curve ofX is given byu(t) = g(t) · ũ(t).

The technique we used in the text to derive the reconstruction equation on slices isnot literallya special case of the
geometric version given here, but it proceeds in the same spirit. To illuminate the similarities and distinctions between
the two approaches, we now write the reconstruction equation (B.1), whereG is the group of one-dimensional
translations.

Special case: one-dimensional translational symmetry. We begin by constructing the principal connectionA,
assuming the additional structure of a Riemannian metric〈〈·, ·〉〉 on M. The procedure we follow is a standard
procedure for constructing themechanical connectionas described in [14].

First, for eachu ∈ M, we define thelocked inertia tensorI (u) : g→ g∗ by

〈I (u)ξ, η〉 = 〈〈ξM(u), ηM(u)〉〉,
where〈·, ·〉 denotes the natural pairing. In our case,ξM(u) = ξu′ and the natural pairing is just scalar multiplication,
soI (u) = 〈〈u′, u′〉〉.

Next, we define themomentum mapJ : TM → g∗ by

〈J (vu), ξ〉 = 〈〈vu, ξM(u)〉〉,
which in our case is justJ (vu) = 〈〈vu, u

′〉〉. Finally, the connectionA : TQ → g is given by

A(vu) = I (u)−1 · J (vu),

which for translational symmetry is simply

A(vu) = 〈〈vu, u
′〉〉

〈〈u′, u′〉〉 . (B.2)

It is simple to verify thatA satisfies the three properties of a principal connection.
For translational symmetry,g(t)−1 · ġ(t) = ġ(t), and so the reconstruction equation (B.1) becomes

ġ(t) = 〈〈X(ũ) − ˙̃u, ũ′〉〉
〈〈ũ′, ũ′〉〉 . (B.3)

A natural way to specify the (arbitrary) choice ofũ is that it be horizontal (i.e.,̃̇u(t) ∈ Horũ(t) for all t). Then
Eq. (B.3) becomes

ġ(t) = 〈〈X(ũ), ũ′〉〉
〈〈ũ′, ũ′〉〉 , (B.4)

which is identical to the reconstruction equation on slices (2.16), if the (now time-varying) templateu0 is the solution
itself û(t).

Application to the KL method. As described in the summary in Section 2.4, there are two distinct steps in
applying these symmetry methods to the KL procedure. The first step involves computing the KL eigenfunctions
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for symmetry-reduced space, by first shifting data by the group action, and then performing the standard KLE. The
second step involves constructing the reduced-order model, and this is where the reconstruction equation is needed.

The reconstruction procedures given in this appendix address only the second part of the KL method. They allow
one to construct a Galerkin model of a PDE, provided the KL eigenfunctions are already specified. They do not,
however, indicate how to construct the KL eigenfunctions in the symmetry-reduced space. To accomplish this, one
needs a shifting procedure, such as template fitting, or its generalization, shifting onto slices, described in Section
3.2.
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