1. Write one line of Matlab code that returns the even numbers from 48 to 764 , inclusive.
2. Given a matrix A, write one line of Matlab code that returns a matrix consisting of the $3 \mathrm{rd}, 11 \mathrm{th}$, and 1st columns of A, in that order.
3. Write a few lines of Matlab code that would plot $y=x^{-2} \sin 4 x-1$ versus x for $1 \leq x \leq 2 \pi$ as a magenta dashed line with a superimposed grid. Label your axes.
4. Calculate the product of the matrix and vector.

$$
\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 3 & 4 \\
5 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=
$$

5. Write a few lines of Matlab code that could calculate the product of the matrix and vector.

$$
\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 3 & 4 \\
5 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]=
$$

6. Write two lines of Matlab code that would evaluate this sum.

$$
\sum_{n=0}^{10} \frac{n}{(n+1)^{2}}
$$

7. Write Matlab code that would solve the system of equations.

$$
\begin{array}{r}
3 y-x+4 z-6=0 \\
5 z+2 x-7=0 \\
y-2 x+1=0
\end{array}
$$

8. What is y as a function of x ? Give an explicit formula for $y(x)$ with specific numerical constants.

9. Write Matlab code that defines a function named myfactorial that uses a for loop to compute n ! (the factorial of n) according to the formula

$$
n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1=\prod_{k=1}^{n} k
$$

10 (a) Write down the matrix A for hamster dynamics $x^{n+1}=A x^{n}$, where $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, assuming hamsters choose and run through a random tunnel from their current house at each time step.

(b) Write a few lines of Matlab code that would estimate the steady-state distribution of hamsters $x=\lim _{n \rightarrow \infty} x^{n}$ from twenty iterations of $x^{n+1}=A x^{n}$.

