Due Tuesday, March 31 in recitation.
Problem 1: Use the power series expansions of $\sin x$ and $\cos x$ to show that

$$
\frac{d}{d x} \cos x=-\sin x
$$

That is, differentiate the power series of $\cos x$ and show it equals the power series of $-\sin x$.

Problem 2: Find the general solution of the ODE using the ansatz $y=e^{\lambda x}$, and then find it again using the power series method.

$$
y^{\prime \prime}+k^{2} y=0
$$

Problems 3,4: Find the two linearly independent power-series solutions of the ODE, centered about $x=0$. If the power series does not simplify to a known function or have a simple expression for the coefficients, provide the first four terms of each solution. Specify the region on which the power series solutions are guaranteed to converge.
3. $\left(x^{2}+1\right) y^{\prime \prime}-6 y=0 \quad$ (Zill 6.1 \#26)
4. $y^{\prime \prime}-(x+1) y^{\prime}-y=0 \quad$ (Zill $\left.6.1 \# 25\right)$

Problems 5,6,7: Use Laplace transforms to solve the initial value problems.
5. $y^{\prime}+6 y=e^{4 t}, \quad y(0)=2 \quad$ (Zill $\left.7.2 \# 33\right)$
6. $y^{\prime \prime}+5 y^{\prime}+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0 \quad$ (Zill $\left.7.2 \# 35\right)$
7. $y^{\prime \prime}-4 y^{\prime}=6 e^{3 t}-3 e^{-t}, \quad y(0)=1, \quad y^{\prime}(0)=-1$

