Due Tuesday, Feb. 3 in recitation.

Find the general solution of the given differential equation and give the largest interval over which the solution is defined.

$$
\begin{aligned}
& \mathbf{1}: \quad \frac{d y}{d x}+y=e^{3 x} \\
& \mathbf{2}: \quad \frac{d y}{d x}+2 x y=x^{3} \\
& \mathbf{3}: \quad x \frac{d y}{d x}-y=x^{2} \sin x \\
& \mathbf{4}: \quad \cos x \frac{d y}{d x}+(\sin x) y=1
\end{aligned}
$$

Solve the initial value problem and give the largest interval over which the solution is defined.

$$
5: \quad \frac{d y}{d x}=2 x-3 y, \quad y(0)=\frac{1}{3}
$$

$6: \quad t \frac{d y}{d t}+y=e^{t}, \quad y(1)=2$
$7: \quad(x+1) \frac{d y}{d x}+y=\ln x, \quad y(1)=10$
$8: \quad x(x+1) \frac{d y}{d x}+x y=1, \quad y(e)=1$

