Due Thursday, April 30 in recitation.

For problems with complex eigenvalues, express your answer in both complex and real-valued form.

Problems 1-5. Find the general solution of the system of equations. Prime notation means differentiation in t, i.e. $x^{\prime}=d x / d t$. Several of these problems feature eigenvalue problems from problems 7-11 of HW 10.

1. $x^{\prime}=-x+2 y$
$y^{\prime}=-7 x+8 y$
2. $x^{\prime}=2 x+2 y$
$y^{\prime}=x+3 y$
3. $x^{\prime}=-x+2 y$
$y^{\prime}=-5 x+y$
4. $x^{\prime}=4 x+5 y$
$y^{\prime}=-2 x+6 y$
5. $x^{\prime}=-8 x-y$
$y^{\prime}=16 x$
Problem 6. Solve the initial value problem.

$$
\begin{aligned}
x^{\prime} & =x / 2 \\
y^{\prime} & =x+y / 2 \\
x(0) & =3, y(0)=5 .
\end{aligned}
$$

Problem 7. Find the general solution.

$$
\begin{aligned}
x^{\prime} & =2 x+4 y+4 z \\
y^{\prime} & =-x-2 y \\
z^{\prime} & =-x-2 z
\end{aligned}
$$

Most problems adapted from Section 8.2 and Appendix II of Zill's "First Course in Differential Equations," 9th edition.

