Problem 1: Find the Laplace transform or inverse Laplace transform as indicated.
(a) $\mathscr{L}\{(3 t+1) \mathscr{U}(t-1)\}$
(b) $\mathscr{L}\left\{e^{2 t}(t-1)^{2}\right\}$
(c) $\mathscr{L}^{-1}\left\{\frac{2 s+5}{s^{2}+6 s+34}\right\}$
(d) $\mathscr{L}^{-1}\left\{\frac{s e^{-\pi s / 2}}{s^{2}+4}\right\}$

Problem 2: Express the function $f(t)$ in terms of the Heaviside function $\mathscr{U}(t-a)$ and then find the Laplace transform $\mathscr{L}\{f(t)\}$.
(a) $f(t)= \begin{cases}\sin t & 0 \leq t<2 \pi \\ 0 & 2 \pi \leq t\end{cases}$
(b) $f(t)= \begin{cases}0 & 0 \leq t<1 \\ t^{2} & 1 \leq t\end{cases}$

Problems 5-7: Use Laplace transforms to solve the initial-value problems.
5. $\quad y^{\prime}+2 y=f(t), \quad y(0)=0, \quad$ where $f(t)= \begin{cases}t & 0 \leq t<1 \\ 0 & 1 \leq t\end{cases}$
6. $\quad y^{\prime \prime}+2 y+y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1, \quad$ where $f(t)= \begin{cases}0 & 0 \leq t<3 \\ 2 & 3 \leq t\end{cases}$
7. $y^{\prime \prime}+4 y^{\prime}+5 y=\delta(t-2 \pi), \quad y(0)=y^{\prime}(0)=0$

Problem 8: Find two linearly independent power-series solutions of the ODE, centered about $x=0$. If the power series does not simplify to a known function or have a simple expression for the coefficients, provide the first four terms of each solution.

$$
y^{\prime \prime}+x^{2} y^{\prime}+x y=0
$$

Problem 9: Use the power series method to solve the initial value problem and specify the solution's interval of convergence (Zill 6.1 problem 29).

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0, \quad y(0)=-2, \quad y^{\prime}(0)=6
$$

