Problems 1-6: Find the general solution of the linear nonhomogeneous ODE using judicious guessing or variation of parameters. (Differentiation on the left-hand side is with respect to the same variable as the function on the right-hand side.)

1. $y^{\prime \prime}+4 y=\sin x$
2. $y^{\prime \prime}+4 y=\sin 2 x$
3. $y^{\prime \prime}-4 y^{\prime}+10 y=e^{-t} \sin t$
4. $y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=6 x e^{2 x}$

Hints: (a) The polynomial equation for λ is easily factorable; try some obvious guesses.
(b) Calculation of the derivatives is much easier if you simply polynomials as much as possible each time you differentiate. (c) It is a lot easier to keep track of all the terms in the equations if your work is neatly organized.
5. $y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \ln t$
6. $y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \sec x$

Problem 7:

Find the solution of the forced mass-spring system $m y^{\prime \prime}+k y=F \sin (\sqrt{k / m} t)$ with initial conditions $y(0)=y^{\prime}(0)=0$ and sketch the solution $y(t)$. Note that the solution grows without bound as $t \rightarrow \infty$. This is called resonant forcing: since the forcing frequency is the same as the natural frequency of oscillation, the pushing is always in synch with the motion, and the oscillations always grow in time.

Hint: Divide the equation by m and make the substitutions $\omega=\sqrt{k / m}$ and $F^{\prime}=F / m$ at the outset. That'll save you from writing $\sqrt{k / m}$ over and over.

