Homework \#5: Laplace transforms
Math 527, UNH spring 2014

Problem 1. Find the Laplace transform of $F(s)=\mathscr{L}\{f(t)\}$ using algebra, linearity, trig identities, s-translation, and table-lookup.
(a) $f(t)=4 t^{2}-5 \sin 3 t$
(b) $\quad f(t)=\left(1+e^{5 t}\right)^{2}$
(c) $\quad f(t)=t^{2} e^{-3 t}$
(d) $f(t)=\sin (3 t+2)$

Problem 2. Find the inverse Laplace transform $f(t)=\mathscr{L}^{-1}\{F(s)\}$ using linearity, partial fractions, complete-the-square, s-translation, and table look-up.
(a) $\quad F(s)=\frac{1}{s^{7}}$
(b) $\quad F(s)=\frac{(s+1)^{2}}{s^{3}}$
(c) $\quad F(s)=\frac{s+1}{s^{2}+2}$
(d) $F(s)=\frac{10 s}{s^{2}-16}$
(e) $\quad F(s)=\frac{2 s-4}{\left(s^{2}+s\right)\left(s^{2}+1\right)}$
(f) $\quad F(s)=\frac{s}{s^{2}+2 s+5}$

Problem 3. The hyperbolic functions $\sinh x$ and $\cosh x$ are defined as

$$
\sinh x=\frac{e^{x}-e^{-x}}{2} \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

Use these definitions to find the Laplace transforms of $\sinh k x$ and $\cosh k x$.

Problem 4. Derive the Laplace transform of t^{n} for positive integer n. To do this, show that $\mathscr{L}\{1\}=\frac{1}{s}$ and that $\mathscr{L}\left\{t^{n}\right\}=\frac{n}{s} \mathscr{L}\left\{t^{n-1}\right\}$. Put these together to find $\mathscr{L}\{t\}, \mathscr{L}\left\{t^{2}\right\}$, $\mathscr{L}\left\{t^{3}\right\}$, and then generalize to get $\mathscr{L}\left\{t^{n}\right\}$.

Problem 5. Solve the initial value problems using Laplace transforms
(a) $y^{\prime}-y=2 \cos 5 t, \quad y(0)=0$
(b) $\quad y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=2$
(c) $y^{\prime \prime}-6 y^{\prime}+9 y=t, \quad y(0)=0, \quad y^{\prime}(0)=1$

