Math 527 - Homework 4 Solutions

Find the general solution of the differential equations using the method of judicious guessing.

1

The equation to solve is

$$y'' + 3y = x^3 - 1. (1)$$

We first solve the associated homogeneous equation y'' + 3y = 0.

$$\lambda^{2} + 3 = 0$$
$$\lambda^{2} = -3$$
$$\lambda = \pm \sqrt{3}i.$$

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x).$$

Now we make the judicious guess

$$y_p = Ax^3 + Bx^2 + Cx + D,$$

which implies

$$y_p' = 3Ax^2 + 2Bx + C,$$

$$y_p'' = 6Ax + 2B.$$

Plugging these into (1) and rearranging gives

$$3Ax^3 + 3Bx^2 + (6A + 3C)x + (2B + 3D) = x^3 - 1.$$

From this we obtain the four equations

$$3A = 1$$
, $3B = 0$, $6A + 3C = 0$, $2B + 3D = -1$,

which imply $A = \frac{1}{3}, B = 0, C = -\frac{2}{3}, D = -\frac{1}{3}$. Consequently,

$$y_p = \frac{1}{3}x^3 - \frac{2}{3}x - \frac{1}{3}$$

$$y = C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x) + \frac{1}{3}x^3 - \frac{2}{3}x - \frac{1}{3}.$$

$$y'' - 10y' + 25y = 30x + 3 \tag{2}$$

We first solve the associated homogeneous equation y'' - 10y' + 25y = 0.

$$\lambda^2 - 10\lambda + 25 = 0$$

$$(\lambda - 5)^2 = 0$$

$$\lambda = 5$$
 (repeated root).

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 e^{5x} + C_2 x e^{5x}$$
.

Now we make the judicious guess

$$y_p = Ax + B$$
,

which implies $y_p' = A$, $y_p'' = 0$. Plugging these into (2) and rearranging gives

$$25Ax + (-10A + 25B) = 30x + 3.$$

From this we obtain the equations

$$25A = 30,$$
 $-10A + 25B = 3,$

which imply $A = \frac{6}{5}$, $B = \frac{3}{5}$. Consequently,

$$y_p = \frac{6}{5}x + \frac{3}{5}$$

$$y = C_1 e^{5x} + C_2 x e^{5x} + \frac{6}{5}x + \frac{3}{5}.$$

$$4y'' - 4y' - 3y = \cos(2x). \tag{3}$$

We first solve the associated homogeneous equation 4y'' - 4y' - 3y = 0.

$$4\lambda^2 - 4\lambda - 3 = 0$$

$$(2\lambda + 1)(2\lambda - 3) = 0$$

$$\lambda = -\frac{1}{2}, \frac{3}{2}.$$

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 e^{-\frac{1}{2}x} + C_2 e^{\frac{3}{2}x}.$$

Now we make the judicious guess

$$y_p = A\cos(2x) + B\sin(2x),$$

which implies

$$y_p' = -2A\sin(2x) + 2B\cos(2x),$$

$$y_p'' = -4A\cos(2x) - 4B\sin(2x).$$

Plugging these into (3) and simplifying gives

$$(-19A - 8B)\cos(2x) + (8A - 19B)\sin(2x) = \cos(2x).$$

From this we obtain the equations

$$-19A - 8B = 1,$$
 $8A - 19B = 0,$

which imply $A = -\frac{19}{425}$, $B = -\frac{8}{425}$. Consequently,

$$y_p = -\frac{19}{425}\cos(2x) - \frac{8}{425}\sin(2x)$$

$$y = C_1 e^{-\frac{1}{2}x} + C_2 e^{\frac{3}{2}x} - \frac{19}{425}\cos(2x) - \frac{8}{425}\sin(2x).$$

$$y'' + 4y = 3\sin(2x). (4)$$

We first solve the associated homogeneous equation y'' + 4y = 0.

$$\lambda^2 + 4 = 0$$

$$\lambda^2 = -4$$

$$\lambda = \pm 2i$$
.

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 \cos(2x) + C_2 \sin(2x)$$
.

The obvious judicious guess, $y_p = A\cos(2x) + B\sin(2x)$, won't work because it is a solution to the associated homogeneous equation. So instead we use

$$y_p = x(A\cos(2x) + B\sin(2x)),$$

which implies

$$y_p' = A\cos(2x) + B\sin(2x) + x(-2A\sin(2x) + 2B\cos(2x)),$$

$$y_p'' = -4A\sin(2x) + 4B\cos(2x) + x(-4A\cos(2x) - 4B\sin(2x)).$$

Plugging these into (4) and simplifying gives

$$-4A\sin(2x) + 4B\cos(2x) = 3\sin(2x),$$

which implies $A = -\frac{3}{4}$, B = 0. Consequently,

$$y_p = -\frac{3}{4}x\cos(2x)$$

$$y = C_1 \cos(2x) + C_2 \sin(2x) - \frac{3}{4}x \cos(2x).$$

$$y'' - y' + \frac{y}{4} = 3 + e^{\frac{x}{2}}.$$

Just to eliminate fractions, we'll start by multiplying both sides of the equation by 4:

$$4y'' - 4y' + y = 12 + 4e^{\frac{x}{2}}. (5.1)$$

We first solve the associated homogeneous equation 4y'' - 4y' + y = 0.

$$4\lambda^2 - 4\lambda + 1 = 0$$

$$(2\lambda - 1)^2 = 0$$

$$\lambda = \frac{1}{2} \text{ (repeated root)}.$$

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 e^{\frac{1}{2}x} + C_2 x e^{\frac{1}{2}x}.$$

Since the right-hand side of (5.1) is the sum of functions from two different families, we find the particular solution in two steps. First we find a solution y_{p_1} to the equation

$$4y'' - 4y' + y = 12. (5.2)$$

We make the judicious guess $y_{p_1} = A$, which implies $y'_{p_1} = y''_{p_1} = 0$. Plugging these into (5.2) gives A = 12, which means

$$y_{p_1} = 12.$$

Next we find a solution y_{p_2} to the equation

$$4y'' - 4y' + y = e^{\frac{x}{2}}. (5.3)$$

The obvious judicious guess, $y_{p_2}=Be^{\frac{x}{2}}$, won't work because it is a solution to the associated homogeneous equation. Our second guess would be $y_{p_2}=Bxe^{\frac{x}{2}}$, but the same issue arises. So we use

$$y_{p_2} = Bx^2 e^{\frac{x}{2}},$$

which implies

$$y'_{p_2} = 2Bxe^{\frac{x}{2}} + \frac{1}{2}Bx^2e^{\frac{x}{2}},$$

$$y_{p_2}'' = 2Be^{\frac{x}{2}} + 2Bxe^{\frac{x}{2}} + \frac{1}{4}Bx^2e^{\frac{x}{2}}.$$

Plugging these into (5.3) and simplifying gives

$$8Be^{\frac{x}{2}} = 4e^{\frac{x}{2}}$$

$$8B = 4$$

$$B = \frac{1}{2}.$$

Consequently,

$$y_{p_2} = \frac{1}{2}x^2 e^{\frac{x}{2}}$$

$$y = y_c + y_{p_1} + y_{p_2}$$
$$= C_1 e^{\frac{1}{2}x} + C_2 x e^{\frac{1}{2}x} + 12 + \frac{1}{2} x^2 e^{\frac{x}{2}}.$$

$$y'' - 2y' + 5y = e^x \cos(2x). (6)$$

We first solve the associated homogeneous equation y'' - 2y' + 5y = 0.

$$\lambda^{2} - 2\lambda + 5 = 0$$

$$\lambda = \frac{2 \pm \sqrt{-16}}{2}$$

$$= \frac{2 \pm 4i}{2}$$

$$= 1 \pm 2i.$$

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 e^x \cos(2x) + C_2 e^x \sin(2x).$$

The obvious judicious guess, $y_p = e^x(A\cos(2x) + B\sin(2x))$, won't work because it is a solution to the associated homogeneous equation. So instead we use

$$y_p = xe^x (A\cos(2x) + B\sin(2x)).$$

To simplify our calculations, let $s = A\cos(2x) + B\sin(2x)$ so that $y_p = xe^x s$. Observe that s'' = -4s and we get

$$y'_p = e^x s + xe^x s + xe^x s',$$

 $y''_p = 2e^x s + 2e^x s' - 3xe^x s + 2xe^x s'.$

Plugging these into (6) and simplifying gives

$$2e^{x}s' = e^{x}\cos(2x)$$
$$2s' = \cos(2x)$$
$$-4A\sin(2x) + 4B\cos(2x) = \cos(2x),$$

which implies A = 0, $B = \frac{1}{4}$. Consequently,

$$y_p = \frac{1}{4}xe^x\sin(2x)$$

$$y = C_1 e^x \cos(2x) + C_2 e^x \sin(2x) + \frac{1}{4} x e^x \sin(2x).$$

$$y'' + 2y' + y = \sin x + 3\cos(2x). \tag{7.1}$$

We first solve the associated homogeneous equation y'' + 2y' + y = 0.

$$\lambda^2 + 2\lambda + 1 = 0$$

$$(\lambda + 1)^2 = 0$$

$$\lambda = -1 \text{ (repeated root)}.$$

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 e^{-x} + C_2 x e^{-x}.$$

Since the two trig functions on the right-hand side of (7.1) have different arguments (one is x, the other 2x), we find the particular solution in two steps. First we find a solution y_{p_1} to the equation

$$y'' + 2y' + y = \sin x. (7.2)$$

We make the judicious guess

$$y_{p_1} = A\cos x + B\sin x,$$

which implies

$$y'_{p_1} = -A\sin x + B\cos x,$$

$$y''_{p_1} = -A\cos x - B\sin x.$$

Plugging these into (7.2) and simplifying gives

$$-2A\sin x + 2B\cos x = \sin x$$
,

which implies $A = -\frac{1}{2}$, B = 0. Therefore,

$$y_{p_1} = -\frac{1}{2}\cos x.$$

Next we find a solution y_{p_2} to the equation

$$y'' + 2y' + y = 3\cos(2x). (7.3)$$

We make the judicious guess

$$y_{p_2} = C\cos(2x) + D\sin(2x),$$

which implies

$$y'_{p_2} = -2C\sin(2x) + 2D\cos(2x),$$

$$y_{n_2}'' = -4C\cos(2x) - 4D\sin(2x).$$

Plugging these into (7.3) and simplifying gives

$$(4D - 3C)\cos(2x) + (-3D - 4C)\sin(2x) = 3\cos(2x).$$

From this we obtain equations

$$4D - 3C = 3,$$
 $-3D - 4C = 0,$

which imply $C=-\frac{9}{25},\,D=\frac{12}{25}.$ Consequently,

$$y_{p_2} = -\frac{9}{25}\cos(2x) + \frac{12}{25}\sin(2x)$$

$$y = y_c + y_{p_1} + y_{p_2}$$
$$= C_1 e^{-x} + C_2 x e^{-x} - \frac{1}{2} \cos x - \frac{9}{25} \cos(2x) + \frac{12}{25} \sin(2x).$$

$$y'' - y = x^2 e^{3x}. (8)$$

We first solve the associated homogeneous equation y'' - y = 0.

$$\lambda^2 - 1 = 0$$

$$\lambda^2 = 1$$

$$\lambda = \pm 1.$$

Therefore, the solution to the associated homogeneous equation is

$$y_c = C_1 e^x + C_2 e^{-x}$$
.

Now we make the judicious guess

$$y_p = (Ax^2 + Bx + C)e^{3x},$$

which implies

$$y_p' = (2Ax + B)e^{3x} + 3(Ax^2 + Bx + C)e^{3x},$$

$$y_p'' = 2Ae^{3x} + 6(2Ax + B)e^{3x} + 9(Ax^2 + Bx + C)e^{3x}.$$

Plugging these into (8) and simplifying gives

$$8Ax^2 + (12A + 8B)x + (2A + 6B + 8C) = x^2.$$

From this we obtain the three equations

$$8A = 1,$$
 $12A + 8B,$ $2A + 6B + 8C = 0,$

which imply $A = \frac{1}{8}$, $B = -\frac{3}{16}$, $C = \frac{7}{64}$. Consequently,

$$y_p = \left(\frac{1}{8}x^2 - \frac{3}{16}x + \frac{7}{64}\right)e^{3x}$$

$$y = C_1 e^x + C_2 e^{-x} + \left(\frac{1}{8}x^2 - \frac{3}{16}x + \frac{7}{64}\right)e^{3x}.$$