Math 527 - Homework 4 Solutions

Find the general solution of the differential equations using the method of judicious guessing.
1
The equation to solve is

$$
\begin{equation*}
y^{\prime \prime}+3 y=x^{3}-1 . \tag{1}
\end{equation*}
$$

We first solve the associated homogeneous equation $y^{\prime \prime}+3 y=0$.

$$
\begin{aligned}
\lambda^{2}+3 & =0 \\
\lambda^{2} & =-3 \\
\lambda & = \pm \sqrt{3} i .
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} \cos (\sqrt{3} x)+C_{2} \sin (\sqrt{3} x) .
$$

Now we make the judicious guess

$$
y_{p}=A x^{3}+B x^{2}+C x+D
$$

which implies

$$
\begin{aligned}
& y_{p}^{\prime}=3 A x^{2}+2 B x+C, \\
& y_{p}^{\prime \prime}=6 A x+2 B .
\end{aligned}
$$

Plugging these into (1) and rearranging gives

$$
3 A x^{3}+3 B x^{2}+(6 A+3 C) x+(2 B+3 D)=x^{3}-1 .
$$

From this we obtain the four equations

$$
3 A=1, \quad 3 B=0, \quad 6 A+3 C=0, \quad 2 B+3 D=-1,
$$

which imply $A=\frac{1}{3}, B=0, C=-\frac{2}{3}, D=-\frac{1}{3}$. Consequently,

$$
y_{p}=\frac{1}{3} x^{3}-\frac{2}{3} x-\frac{1}{3}
$$

and the general solution is

$$
y=C_{1} \cos (\sqrt{3} x)+C_{2} \sin (\sqrt{3} x)+\frac{1}{3} x^{3}-\frac{2}{3} x-\frac{1}{3} .
$$

The equation to solve is

$$
\begin{equation*}
y^{\prime \prime}-10 y^{\prime}+25 y=30 x+3 \tag{2}
\end{equation*}
$$

We first solve the associated homogeneous equation $y^{\prime \prime}-10 y^{\prime}+25 y=0$.

$$
\begin{aligned}
\lambda^{2}-10 \lambda+25 & =0 \\
(\lambda-5)^{2} & =0 \\
\lambda & =5 \text { (repeated root). }
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} e^{5 x}+C_{2} x e^{5 x} .
$$

Now we make the judicious guess

$$
y_{p}=A x+B,
$$

which implies $y_{p}^{\prime}=A, y_{p}^{\prime \prime}=0$. Plugging these into (2) and rearranging gives

$$
25 A x+(-10 A+25 B)=30 x+3 .
$$

From this we obtain the equations

$$
25 A=30, \quad-10 A+25 B=3,
$$

which imply $A=\frac{6}{5}, B=\frac{3}{5}$. Consequently,

$$
y_{p}=\frac{6}{5} x+\frac{3}{5}
$$

and the general solution is

$$
y=C_{1} e^{5 x}+C_{2} x e^{5 x}+\frac{6}{5} x+\frac{3}{5} .
$$

The equation to solve is

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}-3 y=\cos (2 x) \tag{3}
\end{equation*}
$$

We first solve the associated homogeneous equation $4 y^{\prime \prime}-4 y^{\prime}-3 y=0$.

$$
\begin{aligned}
4 \lambda^{2}-4 \lambda-3 & =0 \\
(2 \lambda+1)(2 \lambda-3) & =0 \\
\lambda & =-\frac{1}{2}, \frac{3}{2} .
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} e^{-\frac{1}{2} x}+C_{2} e^{\frac{3}{2} x} .
$$

Now we make the judicious guess

$$
y_{p}=A \cos (2 x)+B \sin (2 x),
$$

which implies

$$
\begin{aligned}
& y_{p}^{\prime}=-2 A \sin (2 x)+2 B \cos (2 x), \\
& y_{p}^{\prime \prime}=-4 A \cos (2 x)-4 B \sin (2 x) .
\end{aligned}
$$

Plugging these into (3) and simplifying gives

$$
(-19 A-8 B) \cos (2 x)+(8 A-19 B) \sin (2 x)=\cos (2 x) .
$$

From this we obtain the equations

$$
-19 A-8 B=1, \quad 8 A-19 B=0
$$

which imply $A=-\frac{19}{425}, B=-\frac{8}{425}$. Consequently,

$$
y_{p}=-\frac{19}{425} \cos (2 x)-\frac{8}{425} \sin (2 x)
$$

and the general solution is

$$
y=C_{1} e^{-\frac{1}{2} x}+C_{2} e^{\frac{3}{2} x}-\frac{19}{425} \cos (2 x)-\frac{8}{425} \sin (2 x) .
$$

The equation to solve is

$$
\begin{equation*}
y^{\prime \prime}+4 y=3 \sin (2 x) \tag{4}
\end{equation*}
$$

We first solve the associated homogeneous equation $y^{\prime \prime}+4 y=0$.

$$
\begin{aligned}
\lambda^{2}+4 & =0 \\
\lambda^{2} & =-4 \\
\lambda & = \pm 2 i .
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} \cos (2 x)+C_{2} \sin (2 x) .
$$

The obvious judicious guess, $y_{p}=A \cos (2 x)+B \sin (2 x)$, won't work because it is a solution to the associated homogeneous equation. So instead we use

$$
y_{p}=x(A \cos (2 x)+B \sin (2 x)),
$$

which implies

$$
\begin{aligned}
& y_{p}^{\prime}=A \cos (2 x)+B \sin (2 x)+x(-2 A \sin (2 x)+2 B \cos (2 x)) \\
& y_{p}^{\prime \prime}=-4 A \sin (2 x)+4 B \cos (2 x)+x(-4 A \cos (2 x)-4 B \sin (2 x)) .
\end{aligned}
$$

Plugging these into (4) and simplifying gives

$$
-4 A \sin (2 x)+4 B \cos (2 x)=3 \sin (2 x)
$$

which implies $A=-\frac{3}{4}, B=0$. Consequently,

$$
y_{p}=-\frac{3}{4} x \cos (2 x)
$$

and the general solution is

$$
y=C_{1} \cos (2 x)+C_{2} \sin (2 x)-\frac{3}{4} x \cos (2 x) .
$$

5

The equation to solve is

$$
y^{\prime \prime}-y^{\prime}+\frac{y}{4}=3+e^{\frac{x}{2}} .
$$

Just to eliminate fractions, we'll start by multiplying both sides of the equation by 4 :

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}+y=12+4 e^{\frac{x}{2}} . \tag{5.1}
\end{equation*}
$$

We first solve the associated homogeneous equation $4 y^{\prime \prime}-4 y^{\prime}+y=0$.

$$
\begin{aligned}
4 \lambda^{2}-4 \lambda+1 & =0 \\
(2 \lambda-1)^{2} & =0 \\
\lambda & =\frac{1}{2} \text { (repeated root). }
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} e^{\frac{1}{2} x}+C_{2} x e^{\frac{1}{2} x} .
$$

Since the right-hand side of (5.1) is the sum of functions from two different families, we find the particular solution in two steps. First we find a solution $y_{p_{1}}$ to the equation

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}+y=12 \tag{5.2}
\end{equation*}
$$

We make the judicious guess $y_{p_{1}}=A$, which implies $y_{p_{1}}^{\prime}=y_{p_{1}}^{\prime \prime}=0$. Plugging these into (5.2) gives $A=12$, which means

$$
y_{p_{1}}=12
$$

Next we find a solution $y_{p_{2}}$ to the equation

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}+y=e^{\frac{x}{2}} . \tag{5.3}
\end{equation*}
$$

The obvious judicious guess, $y_{p_{2}}=B e^{\frac{x}{2}}$, won't work because it is a solution to the associated homogeneous equation. Our second guess would be $y_{p_{2}}=B x e^{\frac{x}{2}}$, but the same issue arises. So we use

$$
y_{p_{2}}=B x^{2} e^{\frac{x}{2}},
$$

which implies

$$
\begin{aligned}
& y_{p_{2}}^{\prime}=2 B x e^{\frac{x}{2}}+\frac{1}{2} B x^{2} e^{\frac{x}{2}} \\
& y_{p_{2}}^{\prime \prime}=2 B e^{\frac{x}{2}}+2 B x e^{\frac{x}{2}}+\frac{1}{4} B x^{2} e^{\frac{x}{2}} .
\end{aligned}
$$

Plugging these into (5.3) and simplifying gives

$$
\begin{aligned}
8 B e^{\frac{x}{2}} & =4 e^{\frac{x}{2}} \\
8 B & =4 \\
B & =\frac{1}{2} .
\end{aligned}
$$

Consequently,

$$
y_{p_{2}}=\frac{1}{2} x^{2} e^{\frac{x}{2}}
$$

and the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p_{1}}+y_{p_{2}} \\
& =C_{1} e^{\frac{1}{2} x}+C_{2} x e^{\frac{1}{2} x}+12+\frac{1}{2} x^{2} e^{\frac{x}{2}} .
\end{aligned}
$$

6

The equation to solve is

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos (2 x) \tag{6}
\end{equation*}
$$

We first solve the associated homogeneous equation $y^{\prime \prime}-2 y^{\prime}+5 y=0$.

$$
\begin{aligned}
\lambda^{2}-2 \lambda+5 & =0 \\
\lambda & =\frac{2 \pm \sqrt{-16}}{2} \\
& =\frac{2 \pm 4 i}{2} \\
& =1 \pm 2 i .
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} e^{x} \cos (2 x)+C_{2} e^{x} \sin (2 x)
$$

The obvious judicious guess, $y_{p}=e^{x}(A \cos (2 x)+B \sin (2 x))$, won't work because it is a solution to the associated homogeneous equation. So instead we use

$$
y_{p}=x e^{x}(A \cos (2 x)+B \sin (2 x)) .
$$

To simplify our calculations, let $s=A \cos (2 x)+B \sin (2 x)$ so that $y_{p}=x e^{x} s$. Observe that $s^{\prime \prime}=-4 s$ and we get

$$
\begin{aligned}
& y_{p}^{\prime}=e^{x} s+x e^{x} s+x e^{x} s^{\prime}, \\
& y_{p}^{\prime \prime}=2 e^{x} s+2 e^{x} s^{\prime}-3 x e^{x} s+2 x e^{x} s^{\prime} .
\end{aligned}
$$

Plugging these into (6) and simplifying gives

$$
\begin{aligned}
2 e^{x} s^{\prime} & =e^{x} \cos (2 x) \\
2 s^{\prime} & =\cos (2 x) \\
-4 A \sin (2 x)+4 B \cos (2 x) & =\cos (2 x),
\end{aligned}
$$

which implies $A=0, B=\frac{1}{4}$. Consequently,

$$
y_{p}=\frac{1}{4} x e^{x} \sin (2 x)
$$

and the general solution is

$$
y=C_{1} e^{x} \cos (2 x)+C_{2} e^{x} \sin (2 x)+\frac{1}{4} x e^{x} \sin (2 x) .
$$

7

The equation to solve is

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=\sin x+3 \cos (2 x) \tag{7.1}
\end{equation*}
$$

We first solve the associated homogeneous equation $y^{\prime \prime}+2 y^{\prime}+y=0$.

$$
\begin{aligned}
\lambda^{2}+2 \lambda+1 & =0 \\
(\lambda+1)^{2} & =0 \\
\lambda & =-1 \text { (repeated root). }
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} e^{-x}+C_{2} x e^{-x}
$$

Since the two trig functions on the right-hand side of (7.1) have different arguments (one is x, the other $2 x$), we find the particular solution in two steps. First we find a solution $y_{p_{1}}$ to the equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=\sin x \tag{7.2}
\end{equation*}
$$

We make the judicious guess

$$
y_{p_{1}}=A \cos x+B \sin x,
$$

which implies

$$
\begin{aligned}
& y_{p_{1}}^{\prime}=-A \sin x+B \cos x, \\
& y_{p_{1}}^{\prime \prime}=-A \cos x-B \sin x .
\end{aligned}
$$

Plugging these into (7.2) and simplifying gives

$$
-2 A \sin x+2 B \cos x=\sin x
$$

which implies $A=-\frac{1}{2}, B=0$. Therefore,

$$
y_{p_{1}}=-\frac{1}{2} \cos x .
$$

Next we find a solution $y_{p_{2}}$ to the equation

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+y=3 \cos (2 x) . \tag{7.3}
\end{equation*}
$$

We make the judicious guess

$$
y_{p_{2}}=C \cos (2 x)+D \sin (2 x),
$$

which implies

$$
\begin{aligned}
& y_{p_{2}}^{\prime}=-2 C \sin (2 x)+2 D \cos (2 x) \\
& y_{p_{2}}^{\prime \prime}=-4 C \cos (2 x)-4 D \sin (2 x)
\end{aligned}
$$

Plugging these into (7.3) and simplifying gives

$$
(4 D-3 C) \cos (2 x)+(-3 D-4 C) \sin (2 x)=3 \cos (2 x) .
$$

From this we obtain equations

$$
4 D-3 C=3, \quad-3 D-4 C=0
$$

which imply $C=-\frac{9}{25}, D=\frac{12}{25}$. Consequently,

$$
y_{p_{2}}=-\frac{9}{25} \cos (2 x)+\frac{12}{25} \sin (2 x)
$$

and the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p_{1}}+y_{p_{2}} \\
& =C_{1} e^{-x}+C_{2} x e^{-x}-\frac{1}{2} \cos x-\frac{9}{25} \cos (2 x)+\frac{12}{25} \sin (2 x) .
\end{aligned}
$$

8

The equation to solve is

$$
\begin{equation*}
y^{\prime \prime}-y=x^{2} e^{3 x} . \tag{8}
\end{equation*}
$$

We first solve the associated homogeneous equation $y^{\prime \prime}-y=0$.

$$
\begin{aligned}
\lambda^{2}-1 & =0 \\
\lambda^{2} & =1 \\
\lambda & = \pm 1 .
\end{aligned}
$$

Therefore, the solution to the associated homogeneous equation is

$$
y_{c}=C_{1} e^{x}+C_{2} e^{-x} .
$$

Now we make the judicious guess

$$
y_{p}=\left(A x^{2}+B x+C\right) e^{3 x},
$$

which implies

$$
\begin{aligned}
& y_{p}^{\prime}=(2 A x+B) e^{3 x}+3\left(A x^{2}+B x+C\right) e^{3 x} \\
& y_{p}^{\prime \prime}=2 A e^{3 x}+6(2 A x+B) e^{3 x}+9\left(A x^{2}+B x+C\right) e^{3 x} .
\end{aligned}
$$

Plugging these into (8) and simplifying gives

$$
8 A x^{2}+(12 A+8 B) x+(2 A+6 B+8 C)=x^{2}
$$

From this we obtain the three equations

$$
8 A=1, \quad 12 A+8 B, \quad 2 A+6 B+8 C=0
$$

which imply $A=\frac{1}{8}, B=-\frac{3}{16}, C=\frac{7}{64}$. Consequently,

$$
y_{p}=\left(\frac{1}{8} x^{2}-\frac{3}{16} x+\frac{7}{64}\right) e^{3 x}
$$

and the general solution is

$$
y=C_{1} e^{x}+C_{2} e^{-x}+\left(\frac{1}{8} x^{2}-\frac{3}{16} x+\frac{7}{64}\right) e^{3 x} .
$$

