Homework \#3

Math 527, UNH spring 2014

Due Thursday, February 21th in recitation

Instructions, same as usual: Solve the problems, simplifying the solution as much as you can. AWE: Always Write Equations, and ADTSTTBSOTE: Always Do The Same Thing To Both Sides Of The Equation. Your work should be legible, organized, and written on loose-leaf paper. Staple the pages together in the upper left-hand corner. Write your name, "Math 527, section \#" and "HW 3" in the upper-right corner.

Problems 1-6. Find the general solution. If initial conditions are given, also solve the initial value problem. The "prime" notation indicates differentiation: $y^{\prime}=d y / d x$, etc.

1. $3 y^{\prime \prime}+6 y^{\prime}+2 y=0$
2. $y^{\prime \prime}+2 y^{\prime}+3 y=0$
3. $y^{\prime \prime}-6 y^{\prime}+9 y=0$
4. $4 y^{\prime \prime}-4 y^{\prime}+y=0 ; \quad y(0)=0, y^{\prime}(0)=3$
5. $\quad 2 y^{\prime \prime}+y^{\prime}-10 y=0 ; \quad y(1)=5, y^{\prime}(1)=2$
6. $y^{\prime \prime}+2 y^{\prime}+5 y=0 ; \quad y(0)=0, y^{\prime}(0)=2$

Problem 7. Show that $e^{i \omega t}$ and $e^{-i \omega t}$ and are linearly independent complex-valued solutions of the ODE $y^{\prime \prime}+\omega^{2} y=0$. Using these complex solutions, derive two linearly independent real-valued solutions, and then use those to form the general real-valued solution of the ODE.

Problem 8. Use Euler's formula to show that $(\cos x+i \sin x)^{n}=\cos n x+i \sin n x$, and then use this result to obtain the double-angle formulae $\sin 2 x=2 \sin x \cos x$ and $\cos 2 x=\cos ^{2} x-\sin ^{2} x$.

Problem 9. Find the general solution to the following ODE, using the ansatz $y(t)=e^{\lambda t}$ and reduction of order.

$$
t \frac{d^{2} y}{d t^{2}}-(1+3 t) \frac{d y}{d t}+3 y=0
$$

Problem 10. Find two linearly independent solutions of

$$
t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0
$$

using the ansatz $y(t)=t^{\lambda}$. You can assume the solutions for λ are distinct.

