Math 527, University of New Hampshire

Name: Answers

INSTRUCTIONS: PLEASE READ CAREFULLY

Write your name and section number above. 5 pts will deducted if either is missing or illegible.
Write your final answers in the space provided. Show your work on attached sheets.

Problem 1: (15 points) Find the general solution of the differential equation.

$$
y^{\prime}-6 x(y-1)^{2 / 3}=0
$$

$$
y=\left(x^{2}+c_{1}\right)^{3}+1
$$

(SEPARABLE)

Problem 2: (15 points) Write down the general solution of each equation. For (b) and (c), assume $k>0$. It is not necessary to show your work.
(a) $y^{\prime}+k y=0 \quad y=c_{1} e^{-k t}$,
(b) $y^{\prime \prime}+k y=0$
$y=c_{1} \cos (\sqrt{k} t)+c_{2} \sin (\sqrt{k} t)$.
(c) $y^{\prime \prime}-k y=0$
$y=c_{1} e^{\sqrt{k} t}+c_{2} e^{-\sqrt{k} t}$

Problem 3: (20 points) Find the solution of the initial value problem.

$$
\begin{array}{ll}
y^{\prime \prime}+4 y=\sin 3 x, \quad y(0)=y^{\prime}(0)=0 & y=3 / 10 \sin (2 x)-1 / 5 \sin (3 x) \\
\text { (note: con use var of pram, judicious guessing or Laplace transforms). }
\end{array}
$$

Problem 4: (20 points) Find the solution of the initial value problem.

$$
\begin{array}{ll}
y^{\prime \prime}+2 y^{\prime}+5 y=\delta(t-3), & y(0)=1, y^{\prime}(0)=0 \\
\text { Laplace) } & y(t)=\frac{1}{2} u(t-3) e^{-(t-3)} \sin (2(t-3))+e^{-t} \cos (2 t)+\frac{1}{2} e^{-t} \sin (2 t)
\end{array}
$$

Problem 5: (15 points) Find the general solution of the differential equation as a power series centered about $x=0$. The first three terms of each linearly independent solution are enough.

$$
\begin{aligned}
y^{\prime \prime}-(x+1) y^{\prime}-y=0 \quad y=C_{0} & {\left[1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\ldots\right] } \\
& +C_{1}\left[x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\ldots\right]
\end{aligned}
$$

Problem 6: (15 points) Find the general solution of the differential equation. Express your answer in terms of real-valued functions.

$$
\begin{aligned}
& x^{\prime}=\left(\begin{array}{rr}
5 & 1 \\
-2 & 3
\end{array}\right) x \quad \vec{x}=c_{1} e^{4 t}\left[\binom{1}{-1} \cos (t)-\binom{0}{1} \sin (t)\right] \\
&+c_{2} e^{4 t}\left[\binom{0}{1} \cos (t)+\binom{1}{-1} \sin (t)\right]
\end{aligned}
$$

