Exam #2, Oct 7, 2011 Math 527, University of New Hampshire

Solutions Name: Section:

INSTRUCTIONS: PLEASE READ CAREFULLY

Write your name and section number above. 5 pts will deducted if either is missing or illegible. Write your final answers in the space provided. Show your work on attached sheets. Staple together in the upper-left corner.

Problem 1 (20 pts): DO NOT SOLVE THE DIFFERENTIAL EQUATION.

Just give an appropriate guess for the particular solution of the nonhomogeneous equation.

(a)
$$y'' - 4y' + 4y = \cos 2x$$

(b) $y'' - 4y' + 4y = e^{2x}$
(c) $y'' + 4y = \cos 2x$
(d) $y'' + 4y = x^2 + e^x \cos 2x$
Problem 2 (30 pts): Find the general solution of the ODE

$$\frac{y_p = A \sin(\partial x) + B \cos(\partial x)}{y_p = A \sin(\partial x) + B \cos(\partial x)}$$

$$\frac{y_p = A \sin(\partial x) + B \cos(\partial x)}{y_p = A \sin(\partial x) + B \cos(\partial x)}$$

Problem 3 (30 pts): Find the general solution of the ODE

$$y'' + 4y' + 4y = x^{-2}e^{-2x}$$

 $y(x) = c_1e^{2x} + c_2xe^{-2x} - \ln|x|e^{-2x} - e^{-2x}$

Problem 4 (20 pts): Consider the forced mass-spring-dashpot ODE with m > 0, k > 0, and $\beta \ge 0$: $my'' + \beta y' + ky = f(t)$ k/m

(a) If $\beta = 0$ and f(t) = 0, what is the frequency of oscillation ω ?

(b) If $\beta = 0$, give a simple bounded function f(t) that will cause unbounded growth in y(t) as $t \to \infty$.

$$f(t) = \alpha \sin(\sqrt{5}mt) + B\cos(\sqrt{5}mt)$$

for $\alpha, \beta \in \mathbb{R}$

ω=

(c) Will the same f(t) cause unbounded growth if β is increased slightly from zero? Why or why not?