INSTRUCTIONS: PLEASE READ CAREFULLY

Write your name and section number above. 5 pts will deducted if either is missing or illegible.
Write your final answers in the space provided. Show your work on attached sheets. Staple together in the upper-left corner.

Problem 1 (20 pts): DO NOT SOLVE THE DIFFERENTIAL EQUATION.
Just give an appropriate guess for the particular solution of the nonhomogeneous equation.
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=\cos 2 x$
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$
\qquad
$y_{p}=A x^{2} e^{2 x}$
(c) $y^{\prime \prime}+4 y=\cos 2 x$
$y_{0}=x(A \sin (2 x)+B \cos (2 x))$
(d) $y^{\prime \prime}+4 y=x^{2}+e^{x} \cos 2 x$

Problem $2(30 \mathrm{pts}):$ Find the general solution of the ODE

$$
y^{\prime \prime}+2 y^{\prime}+4 y=3 \cos x \quad \frac{y(x)=e^{-x}\left[c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right]}{+6 / 3 \sin (x)+6 / 3 \cos (x)}
$$

Problem 3 (30 pts): Find the general solution of the ODE

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x} \quad \underline{y}(x)=c_{1} e^{2 x}+c_{2} x e^{-2 x}-\ln |x| e^{-2 x}-e^{-2 x}
$$

Problem $4(20 \mathrm{pts})$: Consider the forced mass-spring-dashpot ODE with $m>0, k>0$, and $\beta \geq 0$:

$$
m y^{\prime \prime}+\beta y^{\prime}+k y=f(t)
$$

(a) If $\beta=0$ and $f(t)=0$, what is the frequency of oscillation ω ?

(b) If $\beta=0$, give a simple bounded function $f(t)$ that will cause unbounded growth in $y(t)$ as $t \rightarrow \infty$.

$$
\frac{f(t)=\alpha \sin (\sqrt{k} / m t)+\beta \cos (\sqrt{m} t)}{\text { for } \alpha, \beta \in \mathbb{R}}
$$

(c) Will the same $f(t)$ cause unbounded growth if β is increased slightly from zero? Why or why not?

