### Homework #8

#### Math 527, UNH spring 2013

**Problem 1:** Determine the Laplace transform or inverse Laplace transform by combining rules from the table of Laplace transform.

(a) 
$$\mathscr{L}^{-1}\left\{\frac{1}{(s-a)^n}\right\} =$$
 (for positive integer *n*)  
(b)  $\mathscr{L}^{-1}\left\{\frac{e^{-as}}{s}\right\} =$   
(c)  $\mathscr{L}^{-1}\left\{e^{-as}\frac{1}{(s-b)^2+k^2}\right\} =$   
(d)  $\mathscr{L}\left\{t^2\sin kt\right\} =$ 

Problem 2: Find the inverse Laplace transform using convolution

$$\mathscr{L}^{-1}\left\{\frac{1}{s^2(s+1)^2}\right\} =$$

Optional: show that you get the same answer if you use partial fractions.

**Problem 3:** Find the Laplace transform of  $\cosh kt$  by rewriting  $\cosh as$  a sum of exponentials, and then using  $\mathscr{L}\{e^{at}\} = 1/(s-a)$ 

 $\mathscr{L}\{\cosh kt\} =$ 

Problem 4: Starting from

$$\mathscr{L}\{U(t-a)f(t-a)\} = e^{-as}\mathscr{L}\{f(t)\}$$

show that

$$\mathscr{L}^{-1}\{e^{-as}F(s)\} = U(t-a)\left[\mathscr{L}^{-1}\{F(s)\}\right]_{t \to t-a}$$



where  $F(s) = \mathscr{L}{f(t)}$ .

**Problem 5:** For each of the figures above, re-express f(t) in terms of Heaviside functions and then determine the Laplace transform  $\mathscr{L}{f(t)}$ .

Problems 6-8. Use Laplace transforms to solve these initial value problems.

## Problem 6:

$$y'' + y' + y = 1 + e^{-t}, \quad y(0) = 3, \quad y'(0) = -5$$

# Problem 7:

$$y'' + 2y' + y = 3\delta(t-1), \quad y(0) = y'(0) = 0$$

## Problem 8:

$$y'' + 4y = f(t) = \begin{cases} \cos t & \text{for } 0 \le t < \pi/2 \\ 0 & \text{for } \pi/2 \le t \end{cases} \quad y'(0) = y(0) = 0$$