Problem 1: Determine the Laplace transform or inverse Laplace transform by combining rules from the table of Laplace transform.
(a) $\mathscr{L}^{-1}\left\{\frac{1}{(s-a)^{n}}\right\}=\quad$ (for positive integer n)
(b) $\mathscr{L}^{-1}\left\{\frac{e^{-a s}}{s}\right\}=$
(c) $\mathscr{L}^{-1}\left\{e^{-a s} \frac{1}{(s-b)^{2}+k^{2}}\right\}=$
(d) $\mathscr{L}\left\{t^{2} \sin k t\right\}=$

Problem 2: Find the inverse Laplace transform using convolution

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{2}(s+1)^{2}}\right\}=
$$

Optional: show that you get the same answer if you use partial fractions.

Problem 3: Find the Laplace transform of cosh $k t$ by rewriting cosh as a sum of exponentials, and then using $\mathscr{L}\left\{e^{a t}\right\}=1 /(s-a)$

$$
\mathscr{L}\{\cosh k t\}=
$$

Problem 4: Starting from

$$
\mathscr{L}\{U(t-a) f(t-a)\}=e^{-a s} \mathscr{L}\{f(t)\}
$$

show that

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=U(t-a)\left[\mathscr{L}^{-1}\{F(s)\}\right]_{t \rightarrow t-a}
$$

where $F(s)=\mathscr{L}\{f(t)\}$.
Problem 5: For each of the figures above, re-express $f(t)$ in terms of Heaviside functions and then determine the Laplace transform $\mathscr{L}\{f(t)\}$.

Problems 6-8. Use Laplace transforms to solve these initial value problems.

Problem 6:

$$
y^{\prime \prime}+y^{\prime}+y=1+e^{-t}, \quad y(0)=3, \quad y^{\prime}(0)=-5
$$

Problem 7:

$$
y^{\prime \prime}+2 y^{\prime}+y=3 \delta(t-1), \quad y(0)=y^{\prime}(0)=0
$$

Problem 8:

$$
y^{\prime \prime}+4 y=f(t)=\left\{\begin{array}{ll}
\cos t & \text { for } 0 \leq t<\pi / 2 \\
0 & \text { for } \pi / 2 \leq t
\end{array} \quad y^{\prime}(0)=y(0)=0\right.
$$

