Homework #7

Problems 1,2: Use Laplace transforms to solve the initial value problem

- 1. $y'' + y = \sin t$, y(0) = 1, y'(0) = 2
- **2**. $y'' 4y' + 4y = t^2 e^{2t}$, y(0) = 0, y'(0) = 0

Problems 3,4: Express the function f(t) in terms of the Heaviside function \mathscr{U} and then find the Laplace transform $\mathscr{L}{f}$.

3.
$$f(t) = \begin{cases} 2 & 0 \le t < 3 \\ -2 & 3 \le t \end{cases}$$

4.
$$f(t) = \begin{cases} 0 & 0 \le t < 3\pi/2 \\ \sin t & 3\pi/2 \le t \end{cases}$$

Problems 5-7: Use Laplace transforms to solve the initial-value problems.

5.
$$y'' + 4y = f(t), \quad y(0) = 0, \quad y'(0) = -1, \quad \text{where } f(t) = \begin{cases} 1 & 0 \le t < 1 \\ 0 & 1 \le t \end{cases}$$

6.
$$y'' + 2y + y = f(t)$$
, $y(0) = 2$, $y'(0) = 1$, where $f(t) = \begin{cases} 0 & 0 \le t < 3\\ 2(t-3) & 3 \le t \end{cases}$

7. $y'' + y = \sin t + \delta(t - \pi), \quad y(0) = 0, \quad y'(0) = 0$