Problems 1,2: Use Laplace transforms to solve the initial value problem

1. $y^{\prime \prime}+y=\sin t, \quad y(0)=1, \quad y^{\prime}(0)=2$
2. $y^{\prime \prime}-4 y^{\prime}+4 y=t^{2} e^{2 t}, \quad y(0)=0, \quad y^{\prime}(0)=0$

Problems 3,4: Express the function $f(t)$ in terms of the Heaviside function $\mathscr{U}$ and then find the Laplace transform $\mathscr{L}\{f\}$.
3. $f(t)= \begin{cases}2 & 0 \leq t<3 \\ -2 & 3 \leq t\end{cases}$
4. $f(t)= \begin{cases}0 & 0 \leq t<3 \pi / 2 \\ \sin t & 3 \pi / 2 \leq t\end{cases}$

Problems 5-7: Use Laplace transforms to solve the initial-value problems.
5. $\quad y^{\prime \prime}+4 y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=-1, \quad$ where $f(t)= \begin{cases}1 & 0 \leq t<1 \\ 0 & 1 \leq t\end{cases}$
6. $\quad y^{\prime \prime}+2 y+y=f(t), \quad y(0)=2, \quad y^{\prime}(0)=1, \quad$ where $f(t)= \begin{cases}0 & 0 \leq t<3 \\ 2(t-3) & 3 \leq t\end{cases}$
7. $y^{\prime \prime}+y=\sin t+\delta(t-\pi), \quad y(0)=0, \quad y^{\prime}(0)=0$

