Homework \#6: Laplace transforms
Math 527, UNH spring 2013 Due Friday, March 22nd in lecture

Problem 1. Derive the Laplace transform of $e^{a t}$ using the definition of the Laplace transform.

Problem 2. Derive the Laplace transform of $\sin k t$ and $\cos k t$, starting from the definition of the Laplace transform. We covered most of this in lecture, getting $\mathscr{L}\{\sin k t\}=$ $k /\left(s^{2}+k^{2}\right)$ but not the corresponding formula for $\mathscr{L}\{\cos k t\}$. I want you to repeat the work we did in lecture and then finish off by finding the formula for $\mathscr{L}\{\cos k t\}$.

Problem 3. Derive the Laplace transform of t^{n} for positive integer n. To do this, show that $\mathscr{L}\{1\}=\frac{1}{s}$ and that $\mathscr{L}\left\{t^{n}\right\}=\frac{n}{s} \mathscr{L}\left\{t^{n-1}\right\}$. Put these together to find $\mathscr{L}\{t\}, \mathscr{L}\left\{t^{2}\right\}$, $\mathscr{L}\left\{t^{3}\right\}$, and then generalize to get $\mathscr{L}\left\{t^{n}\right\}$.

Problem 4. Find the inverse Laplace transform
$\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+2}\right\}=$

Problem 5. Find the inverse Laplace transform
$\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+s-20}\right\}=$

Problem 6. Find the inverse Laplace transform
$\mathscr{L}^{-1}\left\{\frac{2 s-4}{\left(s^{2}+s\right)\left(s^{2}+1\right)}\right\}=$

Problem 7. Solve the initial value problem using Laplace transforms $\frac{d y}{d t}-y=1, \quad y(0)=0$

