Homework \#2

Math 527 , UNH spring
2013 Due Wednesday, Feb 6th in lecture

Instructions:

1. AWE: Always Write Equations!
2. Your work should be organized and legible.
3. Use loose-leaf paper, not pages torn out from a spiral notebook.
4. Staple the pages together in the upper left-hand corner.
5. Write your name, section number, "Math 527 ", and "HW 2" in the upper-right corner of the first page.

Five percentage points will be deducted for each of instructions 3-5 not followed. Homeworks that are an effort to read will be returned ungraded or with a substantial reduction.

Problems 1-5. Determine whether or not the given ODE is an "exact equation". If it is, find the solution. Solve for $y(x)$ to get an explicit solution if you can. Otherwise leave your answer as implicit solution.

1. $2 x+(2 y-2) \frac{d y}{d x}=-3$
2. $\frac{d y}{d x}=\frac{5 x+4 y}{8 y^{3}-4 x}$
3. $e^{x} \sin y-2 y \sin x+\left(e^{x} \cos y+2 \cos x\right) \frac{d x}{d y}=0$
4. $\quad x \ln y+x y+(y \ln x+x y) \frac{d y}{d x}=0, \quad x>0$
5. $x-y^{3}+y^{2} \sin x-\left(3 x y^{2}+2 y \cos x\right) \frac{d y}{d x}=0$

Problems 6-8. Use the given substitution to reduce the ODE to a separable or 1st-order linear ODE. Do not solve the resulting ODE unless you really, really want to.

Reduce this homogeneous* ODE to a separable ODE using the substitution $u=y / x$.
6. $\frac{d y}{d x}=\frac{y^{2}+2 x y}{y^{2}}$

Reduce this Bernoulli ODE to 1st-order linear using a substitution of the form $u=y^{1-n}$.
7. $\frac{d y}{d x}=y\left(x y^{3}-1\right)$

Reduce this ODE to a separable ODE using a substitution of the form $u=A x+B y+C$.
8. $\frac{d y}{d x}=1+e^{y-x+5}$

