Find the general solution of these systems of equations. If the system has complex eigenvalues, express the solution in terms of both a complex exponentials and sines and cosines. Boldface indicates a vector of appropriate dimension, e.g.

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Problem 1: Write the system in the form $\mathrm{x}^{\prime}=A \mathrm{x}$ and then find the general solution.

$$
\begin{aligned}
& x_{1}^{\prime}=4 x_{1}-3 x_{2} \\
& x_{2}^{\prime}=2 x_{1}-3 x_{2}
\end{aligned}
$$

Problem 2: Find the general solution.

$$
\mathrm{x}^{\prime}=\left(\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right) \mathbf{x}
$$

Problem 3: Find the general solution.

$$
\mathrm{x}^{\prime}=\left(\begin{array}{rr}
1 & -3 \\
3 & 7
\end{array}\right) \mathbf{x}
$$

Bonus: Find the general solution.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rrr}
2 & 4 & 4 \\
-1 & -2 & 0 \\
-1 & 0 & -2
\end{array}\right) \mathbf{x}
$$

