Exam \#2, Oct 7, 2011

Math 527, University of New Hampshire

Name:

Section:

INSTRUCTIONS: PLEASE READ CAREFULLY

Write your name and section number above. 5 pts will deducted if either is missing or illegible.
Write your final answers in the space provided. Show your work on attached sheets. Staple together in the upper-left corner.

Problem 1 (20 pts): DO NOT SOLVE THE DIFFERENTIAL EQUATION.

Just give an appropriate guess for the particular solution of the nonhomogeneous equation.
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=\cos 2 x$ \qquad
(b) $y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$ \qquad
(c) $y^{\prime \prime}+4 y=\cos 2 x$
(d) $y^{\prime \prime}+4 y=x^{2}+e^{x} \cos 2 x$

Problem $2(30 \mathrm{pts})$: Find the general solution of the ODE

$$
y^{\prime \prime}+2 y^{\prime}+4 y=3 \cos x
$$

\qquad

Problem 3 (30 pts): Find the general solution of the ODE

$$
y^{\prime \prime}+4 y^{\prime}+4 y=x^{-2} e^{-2 x}
$$

Problem 4 (20 pts): Consider the forced mass-spring-dashpot ODE with $m>0, k>0$, and $\beta \geq 0$:

$$
m y^{\prime \prime}+\beta y^{\prime}+k y=f(t)
$$

(a) If $\beta=0$ and $f(t)=0$, what is the frequency of oscillation ω ?
(b) If $\beta=0$, give a simple bounded function $f(t)$ that will cause unbounded growth in $y(t)$ as $t \rightarrow \infty$.
(c) Will the same $f(t)$ cause unbounded growth if β is increased slightly from zero? Why or why not?

