Homework #3Due Tuesday, Sept. 8th in recitation

The usual instructions: AWE: Always Write Equations! ADTSTTBSOTE: Always Do The Same Thing To Both Sides Of The Equation! Use loose-leaf paper. Staple the pages together in the upper left-hand corner. Write your name, "Math 527, section #" (with your correct section number), and "HW 3" in the upper-right corner of the first page. Your work, name, and section number must be legible and organized!

Problem 1. Classify each differential as separable, 1st order linear, exact, homogeneous, or Bernoulli. Some equations may be more than one kind. Do not solve the equation.

(a)
$$\frac{dy}{dx} = \frac{x-y}{x}$$

$$(b) \quad \frac{dy}{dx} = \frac{1}{y-x}$$

$$(c) \quad (x+1)\frac{dy}{dx} = -y + 10$$

$$(d) \quad \frac{dy}{dx} = \frac{1}{x(x-y)}$$

$$(e) \quad \frac{dy}{dx} = \frac{y^2 + y}{x^2 + x}$$

$$(f) \quad \frac{dy}{dx} = 5y + y^2$$

$$(g) \quad y = (y - xy^2)\frac{dy}{dx}$$

(h)
$$x\frac{dy}{dx} = ye^{x/y} - x$$

$$(i) \quad xy\frac{dy}{dx} + y^2 = 2x$$

$$(j) \quad 2xy\frac{dy}{dx} + y^2 = 2x^2$$

Problems 2-5. Solve the differential equation.

$$\mathbf{2.)} \quad y^2 + 1 = y \sec^2 x \frac{dy}{dx}$$

3.)
$$(6x+1)y^2\frac{dy}{dx} + 3x^2 + 2y^3 = 0$$

$$4.) \quad t\frac{dQ}{dt} + Q = t^4 \ln t$$

5.)
$$(2x + y + 1)\frac{dy}{dx} = 1$$

Problems 6-7. Solve the initial value problem and give the largest interval on which the solution is defined.

6.)
$$\sin x \frac{dy}{dx} + (\cos x)y = 0, \quad y(7\pi/6) = -2$$

7.)
$$\frac{dy}{dt} + 2(t+1)y^2 = 0, \quad y(0) = -1/8$$

These problems are taken from Chapter 2 review problems in Zill's "First Course in Differential Equations with modeling applications," 9th ed. Brooks/Cole, 2009.