Practice problems for exam $\# 3$, do not turn in.
Problem 1: Use Laplace transforms to solve the initial value problem
(a) $y^{\prime \prime}+y^{\prime}+y=1+e^{-t}, \quad y(0)=3, \quad y^{\prime}(0)=-5$
(b) $y^{\prime \prime}+2 y^{\prime}+y=3 \delta(t-1), \quad y(0)=y^{\prime}(0)=0$
(c) $y^{\prime \prime}+4 y=f(t)=\left\{\begin{array}{ll}\cos t & \text { for } 0 \leq t<\pi / 2 \\ 0 & \text { for } \pi / 2 \leq t\end{array} \quad y^{\prime}(0)=y(0)=0\right.$

Problem 2: Determine the Laplace transform or inverse Laplace transform
(a) $\mathscr{L}^{-1}\left\{\frac{1}{(s-a)^{n}}\right\}=\quad$ (for positive integer n)
(b) $\mathscr{L}^{-1}\left\{\frac{e^{-a s}}{s}\right\}=$
(c) $\mathscr{L}^{-1}\left\{e^{-a s} \frac{1}{(s-b)^{2}+k^{2}}\right\}=$
(d) $\mathscr{L}\{t f(t)\}=$

Problem 3: Use the definition of the Laplace transform \mathscr{L} to show that

$$
\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}
$$

Problem 4: For each of the figures above, re-express $f(t)$ in terms of Heaviside functions and then determine the Laplace transform $\mathscr{L}\{f(t)\}$.

Problem 5: Starting from

$$
\mathscr{L}\{U(t-a) f(t-a)\}=e^{-a s} \mathscr{L}\{f(t)\}
$$

show that

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=\left.U(t-a) \mathscr{L}^{-1}\{F(s)\}\right|_{t \rightarrow t-a}
$$

where $F(s)=\mathscr{L}\{f(t)\}$.

