Homework \#7 (version 2, 2011-10-12)
Math 527, UNH fall 2011
Due Friday, Oct. 14 in lecture.
Problem 1: Use the definition of the Laplace transform \mathscr{L} to show that, for positive integer n,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

Problem 2: Use the definition of the Laplace transform \mathscr{L} to show that

$$
\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}
$$

Problem 3: The hyperbolic sine function is defined as $\sinh t=\left(e^{t}-e^{-t}\right) / 2$. Use the result of Problem 2 and the linearity of the Laplace transform to show that

$$
\mathscr{L}\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}
$$

Problem 4: (optional) The hyperbolic cosine function is defined as $\cosh t=\left(e^{t}+e^{-t}\right) / 2$. Following the method of Problem 3, show that

$$
\mathscr{L}\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}
$$

Problem 5: Solve the initial value problem two ways: first using the ansatz $y=e^{\lambda t}$ and then the method of Laplace transforms.

$$
y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=1, y^{\prime}(0)=0 .
$$

Both methods should give the same answer.

