Homework \#6
Math 527, UNH fall 2011
Will not be collected; do as practice for exam.

Problem 1:

Show that the general solution $y(t)$ of $y^{\prime \prime}+\omega^{2} y=0$ can be written in two equivalent forms,
$y(t)=c_{1} e^{i \omega t}+c_{2} e^{-i \omega t}$
$y(t)=c_{3} \cos \omega t+c_{4} \sin \omega t$,
by deriving formulae for c_{3} and c_{4} in terms of c_{1} and c_{2}, and vice versa. Note that realvalued solutions $y(t)$ are obtained by setting c_{3} and c_{4} to real-valued constants. This derivation allows you, in practice, to go straight from $\lambda= \pm i \omega$ to the form involving sines and cosines, completely skipping the complex exponentials.

Problem 2:

Here we will generalize the results of problem 1. Consider the ODE $y^{\prime \prime}+2 \mu y^{\prime}+\omega_{0}^{2} y=0$. Assuming $\mu^{2}-\omega_{0}^{2}<0$, show that the ansatz $y=e^{\lambda t}$ results $\lambda=-\mu \pm i \omega$, where $\omega=\sqrt{\omega_{0}^{2}-\mu^{2}}$, and that the general solution $y(t)$ can be written in either of these forms
$y(t)=c_{1} e^{-\mu t} e^{i \omega t}+c_{2} e^{-\mu t} e^{-i \omega t}$
$y(t)=c_{3} e^{-\mu t} \cos \omega t+c_{4} e^{-\mu t} \sin \omega t$,
This derivation allows you, in practice, to go straight from $\lambda=-\mu \pm i \omega$ to the form involving sines and cosines, completely skipping the complex exponentials.

Problem 3:

Find the solution of the forced mass-spring system $m y^{\prime \prime}+k y=F_{0} \sin (\sqrt{k / m} t)$ with initial conditions $y(0)=y^{\prime}(0)=0$. Note that the solution grows without bound as $t \rightarrow \infty$. This is called resonant forcing: since the forcing frequency is the same as the frequency of natural oscillation, the pushing is always in synch with the motion, and the oscillations always grow in time.

Problems 4-9: Find the general solution of the linear nonhomogeneous ODE. If you solve a problem with judicious guessing, try solving it again with variation of parameters, just for practice.

Problem 4: $y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos x$

Problem 5: $y^{\prime \prime}-4 y=\left(x^{2}-3\right) \sin 2 x$
Problem 6: $y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=6 x e^{2 x}$
Problem 7: $y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \ln t$
Problem 8: $y^{\prime \prime}+y=\cos ^{2} t$
Problem 9: $3 y^{\prime \prime}-6 y^{\prime}+6 y=e^{x} \sec x$

