Homework #4 Due Friday Sept 23rd in lecture

Math 527, UNH fall 2011

Problems 1-6: Find the general solution of the ODE. If initial values are provided, plug them in to solve the initial-value problem. Hint for problems 1 & 2: use the ansatz $y(x) = c e^{\lambda x}$ rather than applying 1st order linear solution method.

1.
$$y' - 3y = 0$$

2.
$$y' + 3y = 0$$

$$3. \quad y'' - 9y = 0$$

4.
$$y'' + 9y = 0$$

5.
$$y'' - 5y' + 6y = 0$$
, $y(0) = 1$, $y'(0) = 1$

6.
$$y'' - 6y' + 9y = 0$$
, $y(0) = 1$, $y'(0) = 1$

7.
$$y'' + 6y' + 13y = 0$$
, $y(0) = 1$, $y'(0) = 2$

Problem 8: Use reduction of order and the solution $y_1(x) = x$ to find the general solution of

$$x^2y'' + 2xy' - 2y = 0$$

Problem 9: Plug $x = i\omega t$ (where $i = \sqrt{-1}$) into the Taylor series expansion of e^x to show that

$$e^{i\omega t} = \cos \omega t + i \sin \omega t$$