Homework \#4
Math 527, UNH fall 2011
Due Friday Sept 23rd in lecture
Problems 1-6: Find the general solution of the ODE. If initial values are provided, plug them in to solve the initial-value problem. Hint for problems $1 \& 2$: use the ansatz $y(x)=c e^{\lambda x}$ rather than applying 1st order linear solution method.

1. $y^{\prime}-3 y=0$
2. $y^{\prime}+3 y=0$
3. $y^{\prime \prime}-9 y=0$
4. $y^{\prime \prime}+9 y=0$
5. $y^{\prime \prime}-5 y^{\prime}+6 y=0, \quad y(0)=1, y^{\prime}(0)=1$
6. $y^{\prime \prime}-6 y^{\prime}+9 y=0, \quad y(0)=1, y^{\prime}(0)=1$
7. $y^{\prime \prime}+6 y^{\prime}+13 y=0, \quad y(0)=1, y^{\prime}(0)=2$

Problem 8: Use reduction of order and the solution $y_{1}(x)=x$ to find the general solution of

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0
$$

Problem 9: Plug $x=i \omega t$ (where $i=\sqrt{-1}$) into the Taylor series expansion of e^{x} to show that

$$
e^{i \omega t}=\cos \omega t+i \sin \omega t
$$

