Due Wednesday, Nov. 23 in lecture.

Problem 5. Derive the equations $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ and $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=0$ from the differential equation $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ and the ansatz $\mathbf{x}(t)=\mathbf{v} e^{\lambda t}$.

Problems 6,7.

(a) Express the system of differential equations as a matrix equation $\mathbf{x}^{\prime}=\mathbf{A x}$.
(b) Determine the linearly independent solutions $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \ldots$ of the system by computing the eigenvalues and eigenvectors of \mathbf{A}.
(c) Express the general solution of $\mathbf{x}^{\prime}=\mathbf{A x}$ as a linear combination of the linearly independent solutions from (b).

Problem 6.

$$
\begin{aligned}
& \frac{d x}{d t}=x+2 y \\
& \frac{d y}{d t}=4 x-6 y
\end{aligned}
$$

Problem 7.

$$
\begin{aligned}
& \frac{d x}{d t}=-x+y \\
& \frac{d y}{d t}=x+2 y+z \\
& \frac{d z}{d t}=3 y-z
\end{aligned}
$$

Problem 8. Find the solution of Problem 7 with the initial conditions $x(0)=1$, $y(0)=0, z(0)=2$, or equivalently, $(x, y, z)(0)=(1,0,2)$.

