Practice final exam

Math 527, University of New Hampshire

Name:
 Section:

INSTRUCTIONS: Show your work on attached sheets.

Problem 1: (15 pts) Find the general solution of the differential equation. Hint: There's is an easy way to do this problem.

$$
y^{\prime}-3 y=x
$$

Problem 2: (15 pts) Find the general solution of the differential equation.

$$
y^{\prime \prime}-4 y=12 e^{2 x}
$$

Problem 3: (15 pts) Find the general solution of the differential equation using variation of parameters. Note that $\sinh x=\left(e^{x}-e^{-x}\right) / 2$.

$$
y^{\prime \prime}-y=\sinh 2 x
$$

Problem 4: (20 pts) Solve the initial-value problem using Laplace transforms

$$
\begin{aligned}
y^{\prime \prime}+4 y & = \begin{cases}0, & 0 \leq t<2 \pi \\
\sin t, & 2 \pi \leq t\end{cases} \\
y(0) & =1, \quad y^{\prime}(0)=0
\end{aligned}
$$

Problem 5: (20 pts) Give both the complex-valued and real-valued form of the general solution of the system $\mathbf{x}^{\prime}=\mathbf{A x}$, where

$$
\mathbf{A}=\left(\begin{array}{rrr}
2 & 3 & 0 \\
-1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Problem 6: The eigenvalue-eigenvector method of solving the linear system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for the n dimensional vector \mathbf{x} and $n \times n$ matrix \mathbf{A} requires that we solve the equations $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$ and $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=0$.
(a) (10 pts) Derive these two equations from $\mathbf{x}^{\prime}=\mathbf{A x}$ and an appropriate ansatz.
(b) $(5 \mathrm{pts})$ How many eigenvalue solutions λ will there be for the equation $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$?

