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Origin of localized snakes-and-ladders solutions of plane Couette flow
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Spatially localized invariant solutions of plane Couette flow are organized in a snakes-and-ladders structure
strikingly similar to that observed for simpler pattern-forming partial differential equations [Schneider, Gibson,
and Burke, Phys. Rev. Lett. 104, 104501 (2010)]. We demonstrate the mechanism by which these snaking
solutions originate from well-known periodic states of the Taylor-Couette system. They are formed by a localized
slug of wavy-vortex flow that emerges from a background of Taylor vortices via a modulational sideband
instability. This mechanism suggests a close connection between pattern-formation theory and Navier-Stokes
flow.
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The coexistence of laminar and turbulent flows is an issue
of long-standing interest, fundamental to the transition pro-
cess in spatially extended, linearly stable shear flows [1,2].
From dynamical systems theory, the discovery of exact in-
variant solutions of the full nonlinear Navier-Stokes equations
has led to much progress in understanding the dynamics
of transitional flows. Invariant solutions were first studied
in the simplified context of small periodic domains. More
recently, invariant states with localized support have been
computed for spatially extended domains. Examples include
localized equilibria and traveling waves in plane Couette
flow [3–11], traveling waves and periodic orbits of plane
Poiseuille flow [8,12–14], traveling waves in a parallel bound-
ary layer [15,16], and periodic orbits of pipe flow [17–19].
Such localized solutions intrinsically feature coexistence of
laminar and nonlaminar fluid states, and thus are important for
extending the dynamical-systems approach to turbulence to
the spatiotemporal dynamics of transitional flows in extended
domains.

The first known localized invariant solutions of plane Cou-
ette flow are of special interest because they exhibit homo-
clinic snaking [4,10,20], a characteristic snakes-and-ladders
bifurcation structure which relates the localized solutions
to more commonly studied periodic solutions. This snakes-
and-ladders structure is found in simpler, well-understood
pattern forming systems, such as the one-dimensional Swift-
Hohenberg equation [21]. Thus, the localized snaking solu-
tions suggest that the well-developed mathematical analysis
of pattern formation systems that exhibit homoclinic snaking
[22–24] might carry over to localized solutions in shear flows
and thus provide a route toward understanding mechanisms
involved in the formation of laminar-turbulent patterns. De-
spite the striking similarities between plane Couette solutions
and solutions of Swift-Hohenberg, the mechanism by which
the localized snaking solutions emerge has remained unclear.
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The origin of the similarity between shear flow solutions
and Swift-Hohenberg is thus not fully understood. In this
Rapid Communication we elucidate the origin of the snakes-
and-ladders solutions of plane Couette flow. By rotating the
plane Couette system around a spanwise-oriented axis, we
demonstrate that localized plane Couette solutions are con-
nected to well-known periodic states of the Taylor-Couette
system. They are formed by a localized slug of wavy-vortex
flow that emerges in a background of Taylor-vortex flow via
a modulational sideband instability. Since Taylor-Couette is
closely related to the Rayleigh-Benard system, the snaking
solutions can also be connected to modulated convection rolls
[25].

In the Swift-Hohenberg model, localized solution branches
emerge via a bifurcation from the spatially homogenous back-
ground solution which loses linear stability at a critical value
of the control parameter [20,26]. The localized states are well
understood at small amplitude close to the bifurcation. For
plane Couette flow, the laminar state remains linearly stable
for all finite Reynolds numbers [27]. Consequently, there is no
connection of the localized solution branches and the laminar
background at which the origin of the localized states could be
understood. We thus follow an approach pioneered by Nagata
[28,29] who computed the first spatially periodic invariant
solutions of plane Couette flow by exploiting homotopy from
Taylor Couette flow. Anticyclonic rotation around a spanwise
axis destabilizes the laminar flow and allows us to follow the
emergence of snaking solutions via a sequence of bifurcations.
In rotating plane Couette flow (RPCF) [30,31], the flow
between two parallel walls moving in opposite directions and
rotating around a spanwise axis (schematic in Fig. 1), the
velocity field u(x, t ) = [u, v,w](x, y, z, t ) evolves under the
incompressible Navier-Stokes equations

∂u
∂t

+ u · ∇u = −∇p+ 1

Re
∇2u + Ro(u × ẑ), ∇ · u = 0, (1)

in the domain V = Lx × Ly × Lz where (x, y, z) are stream-
wise, wall-normal and spanwise directions. The boundary

2470-0045/2019/100(3)/031102(5) 031102-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.031102&domain=pdf&date_stamp=2019-09-12
https://doi.org/10.1103/PhysRevLett.104.104501
https://doi.org/10.1103/PhysRevLett.104.104501
https://doi.org/10.1103/PhysRevLett.104.104501
https://doi.org/10.1103/PhysRevLett.104.104501
https://doi.org/10.1103/PhysRevE.100.031102


SALEWSKI, GIBSON, AND SCHNEIDER PHYSICAL REVIEW E 100, 031102(R) (2019)

2h

Ω −U

U

x̂xx
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FIG. 1. Schematic of plane Couette flow rotating around the
spanwise (ẑ) axis.

conditions are no-slip on the walls u(y = ±1) = ±x̂ and
periodic in x and z. The two control parameters Reynolds
and rotation number are Re = Uh

ν
and Ro = 2�h

U , where U
is half the relative velocity of the walls, h half the wall
separation, ν the kinematic viscosity, and � the rotation
frequency around the spanwise axis ẑ. RPCF corresponds to
the thin-gap limit of Taylor-Couette flow, the flow between
differentially rotated concentric cylinders [32]. It captures
the Coriolis force whose strength is controlled by Ro but
neglects the geometric curvature of the cylinders when the
gap width is small relative to the cylinder radius. For 0 <

Ro < 1, the primary laminar flow loses stability at Re2 =
107/[Ro(1 − Ro)] to streamwise-invariant Taylor-vortex flow
(TVF) [33,34]. This secondary state itself becomes unstable
to tertiary wavy-vortex flow (WVF) exhibiting a streamwise
modulation of the flow [35].

The snaking solutions were found for the nonrotating
case (Ro = 0) of Eq. (1) and continued to finite rotation
Ro using a Newton-Krylov-hookstep algorithm combined
with quadratic extrapolation in pseudoarc length [36,37]. The
computations were carried out using the channelflow library
[36,38] that employs a Fourier-Chebyshev spatial discretiza-
tion and third-order semi-implicit backward difference time
stepping scheme, which we modified to include the Coriolis
term explicitly.

Figure 2 shows two exact solutions at Re ≈ 170 in a
domain of V = 4π × 2 × 16π taken from the two snaking
branches in PCF and continued to anticyclonic rota-
tion with Ro = 10−4. The solutions are localized in the
spanwise direction with the center dominated by wavy
roll-streak structures similar to the widely studied peri-
odic Nagata, Busse, Clever, Waleffe (NBCW) equilibrium
[28,39,40]. The rotation number is small enough that at
low Re the solutions are hardly modified compared to the
nonrotating case, but large enough to destabilize the laminar
flow at large but finite Re. The equilibrium uEQ is stationary,
and the traveling wave uTW moves as [u, v,w](x, y, z, t ) =
[u, v,w](x − cxt, y, z, 0) with wave speed cx = −0.0016. The
equilibrium is invariant under inversion [u, v,w](x, y, z, t ) =
[−u,−v,−w](−x,−y,−z, t ) while the traveling wave is
shift-reflect symmetric [u, v,w](x, y, z, t ) = [u, v,−w](x +
Lx/2, y,−z, t ). The deviation of the localized solution from
laminar flow tapers to magnitude 10−3 at z = ±8π , showing
that for these solutions Lz = 16π is an adequate approxima-
tion to a spanwise-infinite domain.

Figure 3 shows the parametric continuation of uEQ and uTW

in Re at fixed rotation Ro = 10−4. On reducing Re, the branch
undergoes homoclinic snaking: in a range of 168 < Re < 175
a sequence of saddle-node bifurcations leads to spatial growth
of the structure by adding one pair of vortices for each wind
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FIG. 2. Localized traveling wave uTW (top) and equilibrium uEQ

(bottom) followed to finite rotation Ro = 10−4. (a) and (c) show
the velocity in the y = 0 midplane, with arrows indicating in-plane
velocity and the color scale streamwise velocity u: dark, medium,
light (blue, green, yellow) correspond to u = [−1, 0, 1]. (b) and
(d) are the streamwise velocity with in-plane velocity indicated by
arrows.

of the snaking curve [4,10]. Connecting the entwined snaking
branches of uTW and uEQ are additional rung states which
have neither the equilibrium nor traveling-wave symmetry
and which travel in both the x and z directions. The snakes-
and-ladders structure found in nonrotating PCF and strongly
similar to Swift-Hohenberg snaking is thus structurally stable.
It is not destroyed by rotation; the Coriolis force merely shifts
the solutions to slightly smaller Re and reduces the width of
the snaking curve in Re.

For small Re, rotation does not qualitatively change the
bifurcation structure but for higher Re a significant modifi-
cation is observed: instead of remaining separated from the
laminar state for all finite Re and thereby defying an analysis
of their origin as in Swift-Hohenberg, the snaking branches
now arise from a tertiary bifurcation from laminar flow. At
Re = 1035 the laminar flow is destabilized in a pitchfork
bifurcation, breaking the continuous translational symmetry
and creating spatially periodic, streamwise-invariant TVF.
Being a purely two-dimensional (2D) flow, TVF cannot exist
without rotation. At Re = 1165 WVF bifurcates from TVF
in a subcritical secondary pitchfork bifurcation giving rise to
periodic vortex pairs with wavy modulation in the streamwise
direction. This secondary state can be followed to Ro = 0 and
is homotopic to the NBCW equilibrium in PCF as first shown
by Nagata. Close to the onset of WVF the localized branches
of uEQ and uTW emerge in a tertiary pitchfork bifurcation that
breaks the spanwise periodicity and leads to localization.

To analyze the mechanism by which the bifurcation cre-
ates localization, we compute eigenvalues and eigenmodes
using Arnoldi iteration. The localized branches emerge in
a pitchfork bifurcation resulting from two degenerate real
eigenvalues crossing the imaginary axis. Of the two neutral
eigenmodes, one gives rise to the localized equilibrium and
the other the localized traveling wave. Figure 4 shows the
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FIG. 3. Bifurcation diagram of the localized uTW, uEQ for fixed Ro = 10−4 in the (Re, D) plane with dissipation rate D = V −1
∫ |∇ ×

u|2dx3 treated as solution measure. Shown also are the rung states connecting uTW and uEQ as well as spatially periodic TVF and WVF
solutions with spanwise wave number ζ = 13 (TVF1,WVF1) and ζ = 8 (TVF2,WVF2). Inset (a): The snakes-and-ladders structure observed
in the nonrotating system is preserved at finite rotation. The velocity fields for the points marked by the circles are shown in Fig. 2. Inset (b):
Both localized uTW and uEQ emerge via a tertiary bifurcation from the laminar flow: LAM → TVF → WVF → (uTW, uEQ).

mechanism by which discrete translational symmetry is bro-
ken and localization emerges, in terms of the streamwise-
averaged streamwise velocities in the y = 0 midplane for
both the periodic state and the neutral eigenmode. While the
periodic WVF (thick line) has a spatial frequency of ζ = 13
in units of 1/Lz, i.e., 13 periodic vortex pairs, the eigenmode
(thin line) is dominated by Fourier modes with frequency
ζ = 13 ± 1 = 12, 14 and contains 14 vortex pairs. Adding a
small amount of the spatially detuned eigenmode to the WVF
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FIG. 4. Streamwise-averaged streamwise velocity at the mid-
plane (y = 0) of critical WVF (top, thick), and the neutral eigenmode
(top, thin) of the pitchfork bifurcation creating the localized uEQ

branch. The detuning of the spatial frequency of the eigenmode rel-
ative to the base causes phase interference and thereby an amplitude
modulation leading to localization (bottom). The eigenmode giving
rise to uTW has an almost identical structure but instead preserving of
inversion symmetry it is shift-and-reflect symmetric.

base state leads to phase interference: the amplitude increases
where the eigenmode is in phase with the base state and
reduces when it is out of phase. As a result a beating pattern or
amplitude modulation with periodicity of the computational
domain emerges and leads to localization. This phenomenol-
ogy is characteristic of a modulational sideband instability of
Eckhaus type [41]. As the spanwise length of the computation
domain increases, the detuning of the eigenmodes relative to
the base pattern decreases. As a result, the bifurcation point
of the localized branches approaches that of the WVF, and
in the limit of a spanwise-infinite domain, the WVF and the
localized branches bifurcate together from TVF [26].

The modulated pattern shown in Fig. 4 (bottom) transi-
tions to a strongly localized pattern under continuation to
lower Reynolds numbers. Figure 3(b) details the region of
this transition, beginning with the modulating bifurcation off
WVF at Re = 1150 and strong localization developing by
Re ≈ 1000. Figures 5(a)–5(c) show uEQ at Re = 1050. The
solution here appears to be formed from central core of three-
dimensional (3D) streamwise-modulated WVF surrounded
by weaker 2D streamwise-invariant TVF. To highlight the
distinction between these regions, Fig. 5(c) shows the energy
of the 3D streamwise modulation, E (y, z) = 〈u2

3D〉x/2, where
u3D = u − 〈u〉x and angle brackets indicate averaging. The
energy of the 3D streamwise modulation is clearly confined to
the central region. Consequently, the state formed by the side-
band instability can be interpreted as a localized slug of WVF
embedded in a TVF background. On reducing Re, the TVF
background reduces in amplitude and eventually vanishes at
the Re = 1035 TVF bifurcation point. Figures 5(d)–5(f) show
uEQ just past this point, at Re = 1000. The localized WVF
core, now embedded in a laminar background, survives and
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FIG. 5. The localized solution before and after the TVF on-
set, at Re = 1050 [(a)–(c)] and Re = 1000 [(d)–(f)], respec-
tively. (a),(b),(d),(e) Visualization as in Fig. 2. (c),(f) Filtered
spanwise energy density E (y, z) = 〈u2

3D〉x/2 in the range E =
[0 (light), 10−3(dark)]. The core of the localized branch resembles
streamwise-modulated 3D WVF while the background is formed by
2D TVF. On reducing Re, the TVF background vanishes, leaving the
localized core embedded in a laminar background.

forms the localized state which then proceeds to homoclinic
snaking.

Figure 6 shows how the amplitude of the WVF core and
the TVF background change as Re is reduced away from
the bifurcation point. The background TVF amplitude follows
the amplitude of the periodic TVF solution until it vanishes
at the primary instability at Re < 1035, whereas the localized
WVF core strengthens in amplitude and is largely unaffected
by the changing background.

Localized states in driven dissipative systems typically
resemble a slug of patterned state embedded in a uniform
translationally invariant background. Examples in shear flows
include localized states in a laminar background emerging
in long-wavelength modulational instabilities that create a
laminar “hole” in a spatially periodic state. Those have been
identified in plane Couette [7], plane Poiseuille [14], pipe
[18], and magnetized Taylor-Couette flow [42]. For the sub-
critical Swift-Hohenberg equation such states with uniform
background can be described in terms of spatial dynamics
where the time-independent version of the one-dimensional
partial differential equation is treated as a dynamical system
in space [20]. The uniform state is a fixed point while the
periodic patterned state is represented by a periodic orbit.
The localized state can be understood as a homoclinic orbit
of the fixed point that visits the neighborhood of the periodic
orbit before returning to the fixed point.
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FIG. 6. Amplitudes of the 3D WVF core, the 2D TVF back-
ground, and the periodic WVF and TVF solutions as Re is re-
duced from the localizing bifurcation at Re = 1150. Amplitudes
are quantified by the spanwise maxima of the xy-average energy
density 〈u2〉xy(z)/2 near z = 0 (WVF core) and z = ±Lz/2 (TVF
background), and across the whole spanwise domain for the periodic
solutions. The amplitude of the TVF background closely follows
TVF and vanishes at Re < 1035. The amplitude of the core, however,
decouples from WVF and increases as Re is reduced away from the
bifurcation point. The solid circles denote the solutions shown in
Fig. 5.

The localized snaking solutions in RPCF, however, do not
emerge from a spanwise uniform state but from the spanwise
periodic TVF. Consequently, the suggested spatial dynamics
picture is that of a homoclinic orbit to the periodic orbit
corresponding to TVF, which passes in the neighborhood of
the orbit corresponding to WVF. Once Re is reduced, the
TVF orbit shrinks and collides with the fixed point of laminar
flow. Now the scenario of a homoclinic orbit connecting a
fixed point and one periodic orbit is recovered. An analogous
scenario where a localized slug of one patterned state emerges
in a background of a second patterned state does not occur in
the commonly studied Swift-Hohenberg equation with cubic-
quintic nonlinearity but has recently been observed when a
cubic-quintic-septic nonlinearity is considered [43].

On a finite domain the snaking may terminate by re-
connecting to a periodic state when the localized solution
has grown to the size of the domain. For the parameters
chosen here, the equilibrium branch uEQ terminates on a
periodic WVF state, corresponding to the NBCW equilibrium
at Ro = 0. Note however, that it reconnects to a WVF state
with 8 vortex pairs while it emerges from a WVF with 13
vortex pairs, a spanwise wavelength close to the critical TVF
wavelength [33]. On a periodic domain, WVF of different
periodicity compatible with the periodic boundary conditions
may thus be connected smoothly.

We have elucidated the origin of spatially localized ex-
act invariant solutions that exhibit homoclinic snaking and
thereby suggest a close connection between localized states
in shear flows and well-studied pattern forming mechanisms.
By adding anticyclonic rotation, the snakes-and-ladders so-
lutions in plane Couette flow are found to be formed
by localized slugs of wavy-vortex flow that emerges in a
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background of Taylor-vortex flow via a modulational side-
band instability. Unlike the TVF background they emerge
from, these slugs of WVF survive for vanishing rotation
and form the localized snaking solutions in plane Couette
flow.
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