Geometry of state space in plane Couette flow

P. Cvitanovi¢ and J. F. Gibson

Center for Nonlinear Science, Georgia Institute of Technology
Atlanta, GA 30332-0430, USA predrag.cvitanovic at physics.gatech.edu

Summary. A large conceptual gap separates the theory of low-dimensional chaotic
dynamics from the infinite-dimensional nonlinear dynamics of turbulence. Recent
advances in experimental imaging, computational methods, and dynamical systems
theory suggest a way to bridge this gap in our understanding of turbulence. Recent
discoveries show that recurrent coherent structures observed in wall-bounded shear
flows (such as pipes and plane Couette flow) result from close passes to weakly
unstable invariant solutions of the Navier-Stokes equations. These 3D, fully nonlinear
solutions (equilibria, traveling waves, and periodic orbits) structure the state space
of turbulent flows and provide a skeleton for analyzing their dynamics. We calculate
a hierarchy of invariant solutions for plane Couette, a canonical wall-bounded shear
flow. These solutions reveal organization in the flow’s turbulent dynamics and can be
used to predict directly from the fundamental equations physical quantities such as
bulk flow rate and mean wall drag. All results and the code that generates them are
disseminated through through our group’s open-source CFD software and solution
database Channelflow.org and the collaborative e-book ChaosBook.org.

In a seminal paper, Hopf [1] envisioned the function space of Navier-Stokes
velocity fields as an infinite-dimensional state space, parameterized by viscos-
ity, boundary conditions, and external forces, in which each 3D fluid velocity
field is represented as a single point. As the viscosity decreases, turbulence
sets in, represented by chaotic state-space trajectories. Hopf’s observation that
viscosity causes state-space volumes to contract under the action of dynamics
led to his key conjecture: that long-term, typically observed solutions of the
Navier-Stokes equations lie on finite-dimensional manifolds embedded in the
infinite-dimensional state space of allowed velocity fields.

Recent experimental and theoretical advances [2] support Hopf’s dynami-
cal vision of turbulence. Space limitations prevent us from doing justice here
to the fundamental ‘pipes and planes’ work on shear flows by Nagata, Busse,
Clever, Waleffe, Holmes, Moin, Moser, Kim, Lumley, Mullin, Jiménez, Kawa-
hara, Eckhardt, Kerswell, Tuckerman, Schmiegel, Barkley, Hof, Viswanath,
and others that we build upon; we refer the reader to Refs. [3, 4, 5, 6] for an
overview. The preponderance of recurrent, coherent states in wall-bounded
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shear flows suggests that their long-time dynamics lie on low-dimensional at-
tractors and might thus be amenable to dynamical systems modeling. The
qualitative success and quantitative shortcomings of low-dimensional ‘Proper
Orthogonal Decomposition’ models [3] motivate our work [6, 7, 8, 9]: We seek
to understand the dynamics of turbulence not through a low-d ODE model, but
through a hierarchy of exact invariant solutions of the fully-resolved Navier-
Stokes equations. These exact solutions turn out to be remarkably similar in
appearance to coherent structures observed in both numerical simulations and
experiments.

The correspondence between coherent structures and invariant solutions
can be understood in terms of dynamical theory. Invariant sets (equilibria,
traveling waves, periodic solutions, relative periodic solutions, their stable and
unstable manifolds) partition state space. A trajectory within an invariant set
stays within it forever, whereas a trajectory that starts outside an invariant set
cannot traverse it. Thus the union of invariant sets can explain a good deal
of the dynamics, and the structure imposed by invariant solutions enables
systematic exploration and characterization of dynamical behaviors.

While the equilibria of a dynamical system (steady states of Navier-Stokes)
do not participate in dynamics directly, their stable / unstable manifolds
do shape the flow in their vicinity. The simplest time-dependent invariant
solutions are periodic orbits (spatiotemporally periodic solutions of Navier-
Stokes). Periodic orbits are densely embedded in the natural measure of a
chaotic system. Most periodic orbits found in [9] individually capture the
mean flow and Reynolds stresses of plane Couette turbulence to within a
few percent. Given a hierarchical set of longer and longer such solutions,
the ‘trace formulas’ of periodic orbit theory [10] should provide a systematic
framework for calculating system’s statistical properties (this claim is as yet
untested in the context of turbulent fluid flows). Empirically, the geometry
and dynamics of attractors are dominated by the least unstable periodic orbits.
A coarse global description of dynamics is then provided by specifying the
sequence of invariant solutions whose neighborhoods are visited by a chaotic
trajectory, while linearization about these solutions provides highly accurate
local descriptions.

In the following series of papers and our web repository, we take several
steps towards realizing these goals for the case of small aspect-ratio plane
Couette flow. Ref. [6] describes numerical methods for determining invari-
ant solutions of Navier-Stokes (equilibria, periodic orbits, and their relatives;
linearized stability, invariant manifolds) and a method for constructing state-
space portraits of the infinite-dimensional Navier-Stokes state space. We find
that projections such as Fig. 1.1 onto low-d subspaces spanned by exact equi-
librium solutions reveal much about the spatiotemporal structure of turbulent
dynamics. The resulting state-space portraits are dynamically invariant, in-
trinsic, and representation independent, and can be applied to experimental
as well as numerical data.
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Fig. 1.1. A turbulent trajectory tracking a periodic orbit. (left panel) A
turbulent trajectory (dotted line) is shown against the backdrop of unstable invari-
ant structures, projected from 10° dimensions to 3. Solid dots and lines indicate
equilibria and their unstable manifolds (urm is laminar equilibrium). Key portions
of the turbulent trajectory are highlighted with solid lines: close passes to a periodic
orbit (thick black line) and to the unstable manifolds of several equilibria. A shorter
periodic orbit —not labeled here- is also shown. (right panel) Snapshots along the
periodic orbit at intervals At = 15, marked by open circles in the left panel, starting
at the point labeled P97. See [6] for nomenclature and details of the state-space
projection. Side-by-side animations of state-space projections and 3D fluid velocity
fields given in ChaosBook.org/tutorials are particularly revealing.

Ref. [7] describes eleven equilibrium and five traveling wave solutions of
plane Couette flow, most of them new, and demonstrates the robustness of
these solutions under variations of Re and aspect ratios. We provide a partial
classification of the isotropy subgroups of plane Couette flow and show which
subgroups admit of which types of solution. Solutions are found by a novel
method of generating initial guesses; namely, we start our searches from the
turbulent simulation data, in contrast to more traditional continuations from
/ bifurcations off the known solutions.

Ref. [8] reports several heteroclinic connections amongst the equilibria
solutions and shows that these connections form the backbone of transitions
from multiple to single-roll states. Ref. [9] presents twenty new periodic orbit
solutions to plane Couette flow and investigates how well they probe the
natural measure. Lastly, our online, user-editable database of solutions at
www.channelflow.org, aims to promote the rapid dissemination of research
results within the community. The website also hosts our public domain high-
level software system for plane Couette and channel flows, designed to lower
the barrier to entry to research in dynamical systems and turbulence.

Together, these steps lead to a new way of thinking about coherent struc-
tures and turbulence: (a) that coherent structures are the physical images
of the flow’s least unstable invariant solutions, (b) that turbulent dynamics
consists of walk among the set of these unstable solutions.

The long-term goals of this research program are to develop this vision into
quantitative, predictive description of moderate- Re turbulence, and to use this
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description to control flows and explain their statistics. Open research topics
include (a) Symmetry reduction of plane Couette and pipe-flow state space.
(b) Construction of Poincaré sections, Poincaré maps, symbolic dynamics,
and transition (Markov) graphs. (¢) Extension to large and infinite aspect-
ratio systems. (d) Predicting turbulent statistics from expansions over periodic
orbits.
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