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We present several new spanwise-localized equilibrium and traveling-wave solutions of
plane Couette and channel flows. The solutions exhibit concentrated regions of vortic-
ity that are centered over low-speed streaks and flanked on either side by high-speed
streaks. For several traveling-wave solutions of channel flow, the vortex structures are
concentrated near the walls and form particularly isolated and elemental versions of
coherent structures in the near-wall region of shear flows. One traveling wave appears
to be the invariant solution corresponding to a near-wall coherent structure deduced
from simulation data by Jeong et al. (1997) and analyzed in terms of transient growth
modes of streaky flow by Schoppa & Hussain (2002). The solutions are constructed by
a variety of methods: application of windowing functions to previously known spatially
periodic solutions, continuation from plane Couette to channel flow conditions, and from
initial guesses obtained from turbulent simulation data. We show how the symmetries
of localized solutions derive from the symmetries of their periodic counterparts, analyze
the exponential decay of their tails, examine the scale separation and scaling of their
streamwise Fourier modes, and show that they develop critical layers for large Reynolds
numbers.

1. Introduction

Over the last twenty years the computation of invariant solutions of the Navier-Stokes
equations, or “exact coherent structures,” has opened a new approach to understand-
ing the dynamics of moderate-Reynolds unsteady flows, an approach which promises to
provide a long-hoped-for bridge between dynamical systems theory and turbulence. Un-
like previous derivations of low-order dynamical models of unsteady flows (Lorenz 1963;
Aubry et al. 1988; Holmes et al. 1996), the invariant-solutions approach forgoes low-
d projections and simplified models and instead takes a well-resolved direct numerical
simulation as a quantitatively accurate finite-dimensional approximation of the Navier-
Stokes equations. The well-resolved simulation is then treated as very high-dimensional
dynamical system. The first step in analysis of a dynamical system is the computation of
its invariant solutions: its equilibria, homo- and heteroclinic orbits, and periodic orbits.
In the invariant-solutions view of turbulence, equilibrium solutions correspond to steady
states of the fluid flow, periodic orbits correspond to states of the fluid velocity field re-
peat themselves exactly after a finite time, and homo- and heteroclinic orbits correspond
to dynamic transitions between equilibria or periodic orbits. For flows with homogeneous
spatial directions, such as pipes and channels, continuous symmetries in the equations
of motion allow relative invariant solutions, e.g. traveling waves (relative equilibria) and
relative periodic orbits.

The simplest invariant solutions of fluids are the classical, closed-form steady states of
the Navier-Stokes equations, for example, the parabolic laminar flow profile of pressure-
driven channel and pipe flow, or the linear laminar solution of plane Couette flow. So-
lutions such as these have special cancellations which make it possible to represent the
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exact solution of the nonlinear system with a finite set of simple functions. For example,
for the laminar solution of channel flow, the nonlinear term vanishes and the solution
can be represented exactly as a 2nd order polynomial in the wall-normal variable. How-
ever, if we consider the problem from the perspective of faithful, very high-dimensional
finite discretizations, invariant solutions are the solutions of a nonlinear algebraic or dif-
ferential equations in 104 or more free variables. Only a few very special solutions (the
classical ones) will involve few enough modes to be expressible in closed form, and most
will involve nonlinear coupling between large numbers of nonzero variables. Compared
to the classical closed-form solutions, these computed invariant solutions are typically
unstable, fully three-dimensional, fully nonlinear, distant from the smooth laminar flow
solutions, and involve most if not all the available modes of the numerical representation.
Determination and specification of such solutions is necessarily numerical.

The practical feasibility of finding such high-dimensional nonlinear solutions of Navier-
Stokes was first demonstrated by Nagata (1990), who computed an unstable 3-dimensional
nonlinear equilibrium solution of plane Couette flow at a Reynolds number above the on-
set of turbulence, using a 589-dimensional discretization. The same equilibrium solution
was found independently and analyzed in greater precision and detail by Clever & Busse
(1992) and Waleffe (1998, 2003). A large number of equilibria and traveling waves of
plane Couette and pipe flow have since been found (Nagata 1997; Schmiegel 1999; Faisst
& Eckhardt 2003; Wedin & Kerswell 2004; Gibson et al. 2009), a few of channel flow
(Waleffe 2001; Itano & Toh 2001), and in other flows such square duct flow (Wedin et al.
2009; Okino et al. 2010; Uhlmann et al. 2010). Periodic orbits have been calculated for
plane Couette flow (Kawahara & Kida 2001; Viswanath 2007; Cvitanović & Gibson 2010;
Willis et al. 2013), pipe flow (Duguet et al. 2008), and 2D Kolmogorov turbulence (Chan-
dler & Kerswell 2013), and hetero- and homoclinic connections for plane Couette flow
(Gibson et al. 2008; Halcrow et al. 2009; van Veen & Kawahara 2011). Improved numer-
ical methods and more powerful computers now allow the computation of solutions with
as many as 106 free variables. High-resolution calculations have shown that discretization
errors converge toward zero as resolution is increased, demonstrating that the numerical
solutions are precise approximations of true solutions of the continuous Navier-Stokes
equations, rather than artifacts of discretization. High-resolution calculations have also
allowed accurate computation of solutions with fine spatial structure, such as periodic
orbits that exhibit turbulent “bursting” phases (Viswanath 2007; Cvitanović & Gibson
2010).

Just as in low-dimensional dynamical systems theory, the importance of these invari-
ant solutions stems from the organization they impose on the state space dynamics. In
particular, dynamics in the neighborhood of (relative) equilibria and periodic orbits is
governed to leading order by the linearization about these solutions, and the eigenvalues
of the linearized dynamics reveal the local character of the state space flow and the di-
mensionality of each solution’s unstable manifold. For shear flows at moderate Reynolds
numbers and in closed or small periodic domains, most known invariant solutions have
a positive but remarkably small number of unstable eigenvalues, and correspondingly
low-dimensional unstable manifolds. For example, the equilibrium solution of plane Cou-
ette flow developed by Nagata, Busse, Clever, and Waleffe (hereafter termed the NBCW
equilibrium) has a single unstable eigenvalue (Wang et al. 2007), and the periodic orbit
solutions of Viswanath (2007) have between 1 and 11 unstable eigenvalues. This low di-
mensionality of instability is a crucially important result. It suggests, as long suspected,
that moderate-Reynolds flows are inherently low-dimensional, at least for small confined
domains. It further suggests that the temporal dynamics of such flows results from a
relatively low-dimensional, chaotic but deterministic walk between the flow’s unstable
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invariant solutions, along the low-dimensional network of their unstable manifolds (Gib-
son et al. 2008). Moreover, the coherent structures often observed in such flows can be
understood as resulting from close passes to these unstable invariant solutions, on which
the Navier-Stokes equations balance exactly. Waleffe’s term “exact coherent structures”
expresses this idea well (Waleffe 2001), and from here on we use that term and “invariant
solutions” interchangeably. Indeed, a key feature of the NBCW invariant solution is that
it captures structure commonly observed in shear flows in the form of wavy rolls that
support alternating streaks of high and low streamwise velocity (see § 2.2 for further dis-
cussion). We refer the reader to the Kawahara et al. (2012) review article for an excellent
overview of research in this area.

Most of the development of the invariant-solutions approach has been done in the con-
text of minimal flow units (Jiménez & Moin 1991; Hamilton et al. 1995); that is, small,
periodic domains just large enough to sustain turbulent flow or contain a single coherent
structure. For example, most of the above-cited work in plane Couette flow is for doubly-
periodic boxes with stream- and spanwise periodic lengths just a few multiples of the wall
separation; in pipe flow solutions are typically computed with periodic boundary condi-
tions in the axial direction, with periodic length between one and five pipe diameters.
Minimal flow units are a reasonable simplifying assumption in the study of exact coherent
structures, since they reproduce key features and statistics of moderate-Reynolds turbu-
lence on extended domains with fewer degrees of freedom. Invariant solutions, particularly
periodic orbits, have been shown to quite accurately capture the spatial structures and
temporal dynamics of minimal flow units. On the other hand, there are differences be-
tween minimal and extended turbulence, and invariant solutions computed in minimal
flow units will be necessarily biased towards the former. For example, the Jiménez et al.
(1996) comparison of the NBCW and Kawahara & Kida (2001) minimal-flow solutions
to extended turbulence found rough agreement in the minimal lengthscales of the solu-
tions to comparable lengthscales in extended turbulence, but that local turbulent bursts
were significantly less frequent and smaller in magnitude in minimal-flow-sized subdo-
mains of extended flows than occur for the Kawahara & Kida (2001) periodic orbit in a
proper minimal flow unit. Minimal flow units also rule out consideration of structure at
large length scales, which is known to play an important in transition. For example, in
moderate-Reynolds pipe flow, turbulence first appears in streamwise-localized transient
puffs (Hof et al. 2006) and proliferates to sustained turbulence when the spreading of the
puff outpaces their decay (Avila et al. 2011). Similarly, in spatially extended plane Cou-
ette flow at moderate Reynolds numbers, localized perturbations trigger turbulent spots
that then invade the surrounding laminar flow (Lundbladh & Johansson 1991; Tillmark
& Alfredsson 1992; Daviaud et al. 1992), sometimes exhibiting long-wavelength patterns
of turbulent stripes (Barkley & Tuckerman 2005).

The assumption of minimal flow units also complicates coordination of theory and
experiment, since small periodic cells are not experimentally realizable. Close passes
to unstable traveling waves with axial periodicity have been have been detected in ex-
perimental pipe flows (Hof et al. 2004; de Lozar et al. 2012), but the effort to match
experiment and theory would be greatly aided if invariant solutions could be computed
for boundary conditions that can be achieved in experiment, for example, as localized
perturbations within otherwise laminar flow. More broadly, it seems to us that a funda-
mental motivation for research in coherent structures is the idea that certain localized
flow configurations undergo relatively autonomous evolution, for example, that a packet
of hairpin vortices undergoes a pattern of evolution determined largely by the packet’s
internal organization, and comparatively weakly influenced by the surrounding flow. This
view is implicit in studies that compute coherent structures through conditional aver-



4 J.F. Gibson and E. Brand

ages (Adrian (2007) and references therein), since finite correlation lengths then naturally
produce localized structures, and it is consistent with the Robinson (1991) definition of
a coherent structure as “a three-dimensional region of the flow over which at least one
fundamental variable . . . exhibits significant correlation with itself over a range of space
and/or time that is significantly larger than the smallest local scales of the flow.” Thus
we are motivated to find spatially localized solutions of Navier-Stokes for several rea-
sons: to demonstrate that invariant solutions are not computational artifacts that occur
only in these simplified flow conditions, to facilitate actuation and detection of invariant
solutions in experiment, and to provide a basis for addressing both large length-scale
structure and localized coherent structure in extended flows.

Several papers have made valuable contributions in the computation of spatially lo-
calized solutions of canonical shear flows. The first instance of localization was found in
the spanwise direction alone, in the Schneider et al. (2010b) computation of spanwise-
localized equilibrium and traveling waves of Navier-Stokes, via an “edge-tracking” algo-
rithm for plane Couette flow in a streamwise-periodic but spanwise-extended domain.
These solutions are spanwise-localized forms of the spatially periodic NBCW solution
which exhibit exponential decay towards laminar flow in the spanwise coordinate. Schnei-
der et al. (2010a) demonstrated a number of interesting connections between the local-
ized solutions of Schneider et al. (2010b) and localized solutions of the Swift-Hohenberg
equation. Both systems exhibit homoclinic snaking, a process by which localized solu-
tions grow additional structure at their fronts via a sequence of saddle-node bifurcations
in a continuation parameter (see § 4.2 for further discussion). This is an intriguing con-
nection, as Swift-Hohenberg is a key model equation in the theory of pattern formation
(Hoyle 2006), for which localization is comparatively well-understood (Burke & Knobloch
2007). More recently, Avila et al. (2013) found a streamwise-localized traveling wave of
pipe flow that closely resembles the transient turbulent puffs of Hof et al. (2006). Since
the remaining (azimuthal) homogeneous direction in pipe flow is naturally periodic, the
streamwise-localized Avila et al. (2013) solution is experimentally realizable in a way that
the singly-localized solutions of plane Couette flow are not. The solution of Avila et al.
(2013) is strong evidence that localized puffs and spots are in fact intimately connected
to localized invariant solutions.

Deguchi et al. (2013) generated localized forms of the EQ7/HVS solution of plane Cou-
ette flow (Itano & Generalis 2009; Gibson et al. 2009) via computations on a reduced sys-
tem obtained from asymptotic analysis in the limit of high Reynolds number Re and small
streamwise wavenumber α ∼ 1/Re. In particular they find that EQ7/HVS localizes in
the spanwise direction as the spanwise wavenumber γ decreases. This spanwise-localized
solution appears to correspond to the spanwise-localized EQ7-1 solution computed for
the full Navier-Stokes equations at finite Reynolds number in § 2.5 of this paper, and we
have verified that the periodic EQ7/HVS solution localizes in the spanwise direction at
moderate Reynolds numbers (Re = 400) under continuation to small γ. The evidence for
streamwise localization for small α in Deguchi et al. (2013) seems less convincing. Our
numerical simulations at finite but large Re in the appropriate range of α replicated the
velocity fields Deguchi et al. (2013), but, consistent with their figure 14(a), displayed only
small variations in amplitude over the streamwise coordinate, as opposed to convergence
towards laminar flow.

Some time-varying fluid states with both spanwise and streamwise localization have
been found. Schneider et al. (2010b) found a chaotically wandering state of plane Cou-
ette flow with exponential localization in both span- and streamwise directions. A simi-
lar time-varying doubly-localized state was found by (Duguet et al. 2009), with several
quasi-steady minima. Cherubini et al. (2011) computed a slowly-developing edge state of
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streamwise-developing Blasius flow that is localized in the wall-normal and streamwise
directions and periodic in the spanwise. Visualizations of this edge state in Q-criterion
isosurfaces are very similar to those of hairpin vortices in Adrian (2007). It should be
noted that each of these doubly-localized, time-varying edge states undergoes an irregu-
lar and nonrepeating evolution in time. These states are thus not invariant solutions of
the given flows, but they do suggest the existence of doubly-localized solutions nearby.

The specific results and organization of this paper are as follows. In § 2 we construct
several spanwise localized solutions of plane Couette flow by a windowing and refinement
method that, unlike edge-tracking, puts no restrictions on the number of the solution’s
unstable eigenmodes. We show how the symmetries of localized solutions result from the
symmetries and phase of the underlying periodic solution. In § 3, to further develop the
invariant-solutions approach in experimentally accessible flow conditions, we construct
localized traveling wave solutions of channel flow, by windowing and refining periodic so-
lutions obtained by continuation from plane Couette conditions and by searching among
turbulent simulation data. In doing so we find particularly intriguing traveling-wave solu-
tions of channel flow whose vorticity is concentrated in the near-wall region, in spanwise
and wall-normal localized structures that closely resemble structures deduced from nu-
merical simulation data by Jeong et al. (1997) analyzed in terms of transient growth
modes of streaky flow by Schoppa & Hussain (2002). In § 4 we analyze the tails of the
localized solutions and show that they decay exponentially to laminar flow at the rate
determined solely by the streamwise wavenumber of the solution, with far-field structure
that is independent of the details of the core region. We examine scale separation and
scaling in the streamwise Fourier harmonics and development of critical layers at large
Reynolds numbers.

2. Equilibrium solutions of plane Couette flow

2.1. Governing equations and numerical methods

Plane Couette flow consists of an incompressible fluid confined between two parallel rigid
plates moving in-plane at a constant relative velocity. The x = (x, y, z) coordinates are
aligned with the streamwise, wall-normal, and spanwise directions, where streamwise
is defined as the direction of relative wall motion. We assume a computational flow
domain Ω = [−Lx/2, Lx/2]× [−h, h]× [−Lz/2, Lz/2] with periodic boundary conditions
in x and z and no-slip conditions at the walls y = ±h. We restrict our attention to
streamwise-periodic velocity fields and Lx chosen to match the streamwise wavelength.
In the spanwise direction, we choose Lz either to match the spanwise wavelength of a
spanwise periodic field, or to a large value that approximates a spanwise-infinite domain.
We decompose the total velocity and pressure fields into sums of a laminar base flow
and a deviation from laminar: utot(x, t) = u(x, t) +U(y) ex and ptot = p(x, t) +x dP/dx,
where dP/dx is a fixed constant specifying an imposed mean pressure gradient. For plane
Couette flow we will consider only the case dP/dx = 0, for which the laminar solution is
U(y) = Ūy/h, where Ū is half the relative wall speed. After nondimensionalization by
Ū , h, and the kinematic viscosity ν, the Navier-Stokes equations for plane Couette flow
can be written

∂u

∂t
+ U

∂u

∂x
+ v U ′ ex + u · ∇u = −∇p+

1

Re
∇2u, ∇ · u = 0 (2.1)

where Re = Ūh/ν and the velocity components are u(x, t) = [u, v, w](x, y, z, t). In this
decomposition the plane Couette laminar solution is U(y) = y, dP/dx = 0, u = 0, and
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p = 0. From here on we refer to u as velocity and utot as total velocity, and we note that
u has Dirichlet boundary conditions at the walls.

The Navier-Stokes equations (2.1) with plane Couette conditions and y-Dirichlet, x, z-
periodic boundary conditions are invariant under any combination of rotation by π about
the z axis, reflection about the z = 0 plane, and finite translations in the x and z
directions. The generators of the plane Couette symmetry group are thus

σxy : [u, v, w](x, y, z)→ [−u,−v, w](−x,−y, z)
σz : [u, v, w](x, y, z)→ [u, v,−w](x, y,−z) (2.2)

τ(∆x,∆z) : [u, v, w](x, y, z)→ [u, v, w](x+ ∆x, y, z + ∆z).

We use the standard group-theory notation 〈. . .〉 to indicate the group generated by a set
of group elements; thus the symmetry group of plane Couette flow is 〈σxy, σz, τ(∆x,∆z)〉.
For each subgroup of this group, there is a subspace of velocity fields that is invariant
under the equations of motion. That is, if a velocity field u(x, 0) satisfies u = σu for
each symmetry σ in a given subgroup, u(x, t) will satisfy the same symmetries for all
time. Invariant solutions of the equations of motion naturally lie in these subspaces. For
example, with appropriate choice of the origin, equilibrium solutions of plane Couette
typically satisfy [u, v, w](x, y, z) = [−u,−v,−w](−x,−y,−z) or related symmetries in-
volving σxy and σz, since these symmetries requires the velocity field to vanish at the
origin, and so prevent drifting in x and z.

Equilibrium solutions of plane Couette flow are computed using the Newton-Krylov-
hookstep search algorithm of Viswanath (2007, 2009) to solve the equation fT (u)−u = 0,
where f t : u(0) → u(t) is the finite-time integration of (2.1) with appropriate bound-
ary conditions. Time integration is performed with a Fourier-Chebyshev-tau scheme in
primitive variables (Spalart et al. 1991; Canuto et al. 2006) and 3rd-order semi-implicit
backwards differentiation time stepping (Peyret 2002). Spatial discretization levels are
specified by the Nx × Ny × Nz grid used for collocation calculation of nonlinear terms
with 2/3-style dealiasing. We set spatial discretization levels so the maximum truncated
Fourier and Chebyshev modes are O(10−6) and O(10−10) respectively. Coarser discretiza-
tion for the present problems sometimes produces spurious solutions. Symmetries are
enforced through the search by projecting u → (u + σu)/2 for each of the generators σ
of the appropriate symmetry group at the intervals ∆T = 1 during time integration. The
residual of the discretized search equation is ‖fT (u)− u‖/T , using the L2 norm

‖u‖ =

[
1

V

∫
V

u · u dx
]1/2

(2.3)

where V is the volume of the computational domain. The search algorithm typically
solves the discretized equations to a residual of O(10−14); that is, the spectral coeffi-
cients of fT (u) and u are equal to nearly double precision. The accuracy of a given
discretized solution as an approximate solution to the continuous equations is estimated
by increasing its spatial resolution by a factor of 3/2 in each direction, decreasing the
time step by a factor of 2, and then recomputing the residual at the higher resolution.
Solutions are typically accurate to O(10−6), consistent with size of the truncated spec-
tral coefficients. Further details of the implementation of the search algorithm and time
integration are given in Gibson et al. (2009), and the code is available for download at
www.channelflow.org (Gibson 2013).
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(a) (b) (c)

Figure 1. Three spatially periodic equilibria of plane Couette flow. (a) NBCW lower
branch, (b) EQ7 lower branch, and (c) EQ8 (upper branch of EQ7), all at Re = 400 and
α, γ = 1, 2, where α and γ are the streamwise and spanwise wavenumbers. The visualizations
show 3D isosurfaces of signed swirling strength at s = ±0.09 in green/blue (see text). Isosur-
faces of streamwise velocity indicating high-speed streaks are shown in red at (a) u = 0.3, (b)
u = 0.15, and (c) u = 0.2. The back plane shows contours of streamwise velocity at levels (a,c)
±{0.03, 0.09, 0.15, . . . , 0.45} and (b) ±{0.03, 0.09, 0.15} with dashed/solid lines indicating neg-
ative/positive values. Note that by symmetry both solutions have streaks of equal magnitude
and opposite streamwise velocity; these are not shown in the isosurfaces to reduce clutter, but
they are indicated by the negative/positive symmetry of the backplane contours of streamwise
velocity. The origin is at the center of the box.

2.2. Spatially periodic solutions: EQ1/NBCW, EQ7/HVS, and EQ8

Figure 1 shows a visualization of three spatially periodic equilibrium solutions of plane
Couette flow: the well-known “lower branch” solution of Nagata (1990), Clever & Busse
(1992), and Waleffe (1998) (NBCW, called EQ1 in Gibson et al. (2009))), and the “Hair-
pin Vortex Solution (HVS)” of Itano & Generalis (2009) and discovered independently
as EQ7 in Gibson et al. (2009). Henceforth we refer to these as NBCW and EQ7. EQ8 is
the upper branch of the the EQ7 solution. The NBCW solution is well-known not only
as the first known exact nonlinear solution to the Navier-Stokes equations, but also for a
number of remarkable characteristics, which we outline briefly here. The NBCW solution
captures precisely, in the context of plane Couette flow, the roll-streak structure that
seems ubiquitous in shear flows ranging from Taylor-Couette to the turbulent boundary
layer, and consequently forms an example of an exact instantaneous balance between
the three cycles of Waleffe’s self-sustaining process for shear flows (Waleffe 1997, 1998)).
The NBCW solution has also served as a starting point for recent efforts to formulate a
dynamical-systems theory of turbulence. At Reynolds numbers above the onset of tur-
bulence, the NBCW solution lies between the laminar solution and the chaotic turbulent
region of state space. It has a single unstable eigenvalue across a wide range of Reynolds
numbers, if only fundamental and superharmonic perturbations are allowed (Wang et al.
2007), so that its stable manifold forms a boundary between states that decay to laminar
flow and states that grow to turbulence (Schneider et al. 2008). The comparatively low
viscous shear rate of the NBCW solution suggests that it might be feasible to implement
a control strategy to stabilize this single unstable direction and obtain savings in the wall
driving force compared to the turbulent flow (Wang et al. 2007; Kawahara 2005). The
NBCW solution also has been shown to have well-defined asymptotic structure in the
limit of large Reynolds number, which can be exploited to form a reduced system that
accurately captures the structure of the solution over a wide range of Reynolds numbers
(Wang et al. 2007; Hall & Sherwin 2010). The asymptotic structure and reduced system
are particularly relevant for this work, since it seems likely that any analytic understand-
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ing of localization in Navier-Stokes will be more easily developed in the context of a
reduced system.

The EQ7 solution has been conjectured to be related to hairpin vortices frequently
observed in the turbulent boundary layer (Itano & Generalis 2009). However it should
be noted that the hairpin shapes shown in the visualizations of Itano & Generalis (2009)
are vortex lines, whereas hairpin vortices are typically illustrated using criteria that
highlight the magnitude of vortices, such as Q criterion, lambda criterion, or swirling
strength (Adrian 2007). Figure 1 shows NBCW, EQ7, and EQ8 visualized with signed
swirling strength isosurfaces to show the roll structure and streamwise velocity isosurfaces
to show high-speed streaks. EQ7 does not appear to have hairpin structure in this plot,
nor does it when visualized with Q or lambda criterion. The swirling strength at x is
defined as the magnitude of the complex part of the eigenvalue of the velocity gradient
tensor ∇u(x) (Zhou et al. 1999). We chose swirling strength over other measures of
fluid circulation such as Q criterion because it most clearly identified in 3D isosurfaces
the regions of highly concentrated circulation that are apparent in 2D quiver plots such
figure 5. Since the invariant solutions in this paper have elongated regions of concentrated
circulation nearly aligned with the x axis, we attached a ± sign to the swirling strength
that indicates clockwise/counterclockwise circulation with respect to the positive x axis,
following Wu & Christensen (2006); Stanislas et al. (2008).

2.3. Construction of localized initial guesses by spanwise windowing

The localized equilibria and traveling waves of plane Couette flow described in Schnei-
der et al. (2010b) and Schneider et al. (2010a) are spanwise-localized versions of the
spatially periodic NBCW solution. These localized solutions are comprised of a core
region that closely resembles the periodic NBCW solution, weak tails that decay ex-
ponentially towards laminar flow, and a transitional region between the core and tails.
This form suggests that new localized solutions might be found by imposing a similar
core-transition-tail structure on other known spatially periodic solutions, and then re-
fining these initial guesses with a Newton-Krylov solver. The rough form of this desired
structure can be imposed on initial guesses by multiplying a known spatially periodic
solution, expressed as a perturbation on laminar flow, by an even positive windowing
function W (z) that is nearly unity over a core region |z| < a, decreases smoothly and
monotonically to nearly zero over a transition region a 6 |z| < a + b, and vanishes as
|z| → ∞, followed by projecting the resulting field W (z)u(x) onto the divergence-free
subspace. We have found that with a robust Newton-Krylov solver, the precise details of
the windowing function and the projection are unimportant, and that the only important
details are smoothness and the widths of the core and transition regions. One choice that
suffices is the windowing function

W (z) =
1

4

(
1 + tanh

(
6(a− z)

b
+ 3

))(
1 + tanh

(
6(a+ z)

b
+ 3

))
. (2.4)

This W (z) behaves as desired: it is even, smooth, monotonic in |z|, satisfies 0.995 <
W (z) < 1 for |z| < a and 0 < W (z) < 0.005 for |z| > a + b, and it approaches zero
exponentially as |z| → ∞. W (z) is specified in this particular form because we found that
the most important factor in producing a good initial guess was the size and location
of the transition region, which are specified by the parameters a and b. A sufficient
projection is to apply W (z) to the streamwise and spanwise components of velocity and
reconstruct the wall-normal from the divergence-free condition. That is, let u = [u, v, w]
be a z-periodic solution expressed as a perturbation over laminar flow. An initial guess for
a z-localized solution ug = [ug, vg, wg] can be constructed by setting ug = Wu, wg = Ww,
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and reconstructing vg from ∇ ·ug = 0 and boundary conditions. This projection has the
advantage of being localized in x and z; that is, vg(x, y, z) is determined by a differential
equation in y in which x and z appear only parametrically, and that requires vg to
vanish along with ug and wg for large |z|. Note that ∇ · (W (z) u(x)) = W ′(z)w(x) for
incompressible u; therefore one can minimize the corrections for incompressibility by
choosing the transition region, where W ′(z) is large, to coincide with spanwise bands
where w is on average small. We also tested satisfying incompressibility by applying the
windowing function to the vertical velocity-vorticity representation and inverting; initial
guesses produced this way had much weaker z-localization but sometimes resulted in the
same solution under Newton-Krylov-hookstep search.

It is worth emphasizing that the localization procedure is rather crude. By construction,
the initial guess should close to equilibrium in the core region and the tails –nearly but not
exactly because the guess merely approaches the laminar solution for large z, and because
the nonlocal effect of pressure will corrupt the balance of terms that one would otherwise
expect in the core region where W (z) is very nearly unity. In the transition region,
however, there is no reason to expect that the velocity field that smoothly interpolates
between tails and core will be close to equilibrium. The quality of these initial guesses,
thus, depends entirely on the robustness of the solver used to refine the initial guess
into a solution. In particular, within the transition region the initial guess is too far
from equilibrium to be refined to an exact solution with a straight Newton method and
requires instead a so-called globally convergent search algorithm such as the hookstep
(Dennis & Schnabel 1996; Viswanath 2007, 2009).

2.4. Localization and symmetry

The symmetries of a desired solution are important both in determining solution type
(e.g. equilibrium versus traveling wave) and for reducing the search space, which im-
proves the speed and robustness of the search. The appropriate symmetries for spanwise-
localized solutions are determined as follows. We begin with a spanwise periodic solution
with a known set of symmetries. Multiplying that solution by a nonperiodic windowing
function W (z) breaks any of these symmetries that involve z periodicity. Symmetries
that do not involve z periodicity are preserved through the localization procedure and
form the symmetry group of the localized guess. Note further the symmetry group G of
a periodic solution u transforms by conjugation to τGτ−1 when the solution is phase-
shifted to τu, and that the localization procedure will break and preserve the different
symmetry groups of u and τu differently. Thus it is possible to construct localized guesses
with different symmetry groups by applying the windowing function to the same periodic
solution in different spatial phases.

To illustrate, we show how the symmetries of the equilibrium, traveling wave, and rung
solutions of PCF in Schneider et al. (2010a) arise from localizing the NBCW solution
in different spatial phases. For compactness in what follows we let τx = τ(`x/2, 0), τz =
τ(0, `z/2), and τxz = τxτz. In the spatial phase of Waleffe (2003), the (`x, `z)-periodic
NBCW solutions have symmetry group 〈τxσz, τzσxyz〉 = {e, τxσz, τxzσxy, τzσxyz}, which
is the S symmetry group of Gibson et al. (2009). † The localizing procedure above sets
[ug, wg](x, y, z) = W (z)[u,w](x, y, z) and determines vg from incompressibility. A simple
series of substitutions shows that the first symmetry is preserved under localization,
ug = τxσzug, but the second and third symmetries are not: ug 6= τxzσxyug and ug 6=
τzσxyzug. Intuitively, since the windowing function W (z) is constant in x and y and even
about z = 0 but not periodic in z, windowing preserves the z-reflection, x-translation

† Note that in Gibson et al. (2009), the y subscript on σxy was suppressed.
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(a) (b)

(c) (d)

Figure 2. Construction of localized initial guesses by windowing. (a,b) The spa-
tially periodic EQ7 solution of plane Couette flow, in two spatial phases. Three copies of the
α, γ = 1, 2 periodic solution at Re = 400 are shown in the z ∈ [−3π/2, 3π/2] subset of the full
Lx, Lz = 2π, 6π computational domain, with the z = 0 plane shown bisecting the box to high-
light the z symmetries. The solutions in (a) and (b) are related by a quarter-wavelength phase
shift in z. (c,d) Initial guesses for localized solutions with different symmetry groups, produced
by multiplying (a,b) by windowing functions W (z) (heavy line in front planes). Isosurfaces of
signed swirling strength at s = ±0.12 are shown in (green/blue) and contours of streamwise
velocity in the back plane at contour levels u = ±{0.03, 0.09, . . . , 0.27}.

symmetry τxσz of the NBCW solution, but not its τxzσxy or τzσxyz symmetries, which
both involve z periodicity. The sole preserved symmetry, τxσz, is in fact the symmetry of
the localized traveling wave reported in Schneider et al. (2010a), i.e. [ug, vg, wg](x, y, z) =
[ug, vg,−wg](x + `x/2, y,−z). Refinement of this initial guess by a search method that
respects symmetry results in a traveling-wave solution with the same symmetries.

The same localization process on a shifted NBCW solution produces an initial guess
with the symmetry of the localized equilibrium solutions of Schneider et al. (2010a).

Shifting the NBCW solution by a quarter-wavelength in z, i.e. by τ
1/2
z = τ(0, `z/4), thus

changes its symmetry group by conjugation τ
1/2
z sτ

−1/2
z from {e, τxσz, τxzσxy, τzσxyz} to

{e, τxzσz, τxzσxy, σxyz} = 〈τxzσz, σxyz〉 which is the Rxz symmetry group of Gibson
et al. (2009). Of these symmetries, the z-localization breaks τxzσz and τxzσxy, since they
involve periodicity in z, and leaves only σxyz symmetry, which is in fact the symmetry
of the localized equilibrium of plane Couette reported in Schneider et al. (2010a). For
choices of z phase that are not integer multiples of `z/4, each of the three symmetries
of the periodic solution is broken by the localization, leaving completely unsymmetric
initial guesses, corresponding to the rung solutions of Schneider et al. (2010a).

2.5. Spanwise localized equilibria of plane Couette flow: computation

In this section we construct new spanwise localized equilibrium solutions of plane Cou-
ette flow by applying windowing and refinement to the spatially periodic EQ7 solu-
tion. Figure 2 illustrates how spanwise-localized initial guesses with different symmetry
groups are constructed from different spatial phases of the spatially periodic solution. Fig-
ure 2(a) shows EQ7 at Re = 400 with fundamental streamwise and spanwise wavenum-
bers α, γ = 1, 2 (i.e. periodic lengths `x = 2π/α = 2π and `z = 2π/γ = π). The figure
shows three copies of the periodic structure in the z ∈ [3π/2, 3π/2] subset of the full
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Lx, Lz = 2π, 6π computational domain. The spatial phase of EQ7 in figure 2(a) is chosen
so that one concentrated vortex structure is centered on the z = 0 plane. In this phase
the solution has symmetry group 〈σxy, τxz, τxσz〉. Each of these symmetries is readily ap-
parent in the figure, keeping in mind that the orientation of swirling with respect to the x
axis and thus color of the isosurfaces changes under σxy (rotation about z axis) and τxσz
(x shift, z-reflect symmetry). The windowing function W (z) is plotted as a function of z
in the front face of the box. Multiplication of the periodic structure shown in figure 2(a)
by the windowing function, followed by projection onto the divergence-free subspace as
described in § 2.3, produces the initial guess shown in figure 2(c). In this case the win-
dowing parameters a, b = 0.3, 1 were chosen to preserve the single concentrated vortex
structure centered on the z = 0 plane and to taper rapidly to nearly zero before the next
vortical structure. The w component of EQ7 drops from O(10−1) to O(10−2) between the
concentrated vortices, so placing the transition region of the windowing function in this
region also minimizes corrections on the initial guess for incompressibility, as discussed
in § 2.3. The localization in z breaks the τxz symmetry of the periodic solution, since it
involves z periodicity, leaving a localized initial guess with symmetry group 〈σxy, τxσz〉.
Any solution in this symmetry group will be an equilibrium, since the x reflection in σxy
prevents travelings waves in x and the z reflection in τxσz symmetry prevents traveling
waves in z.

Figure 2(b,d) illustrate construction of a localized initial guess with different sym-
metries by windowing the periodic solution in a different spanwise phase. Figure 2(b)
shows the same periodic EQ7 solution as in figure 2(a), but translated by a quarter-
wavelength in z. In this phase the periodic NBCW solution has symmetries 〈σxy, σz, τxz〉,
which are again readily apparent in the figure (and which can be derived by conjugating

〈σxy, τxz, τxσz〉 with quarter-wavelength shift τ
1/2
z and choosing the specified symmetries

as generators for the conjugated group). A wider windowing function, with a = b = 1, pre-
served a pair of mirror-symmetric concentrated vortical structures in the core region and
tapered rapidly to nearly zero before reaching the next vortices, as shown in figure 2(b).
The windowing breaks symmetries with factors of τxz, producing an initial guess for a
spanwise-localized solution with symmetry group 〈σxy, σz〉. Again, sign changes in all
three coordinates in this symmetry group fix the phase of the velocity field with respect
to the origin and rule out traveling waves. Thus, the localized solutions in both choices
of z phase will be equilibria, unlike the localized solutions of Schneider et al. (2010a),
where one choice of phase produces equilibria and the other streamwise-traveling waves.

The localized initial guesses depicted in figure 2(c,d) were then refined to numerically
exact equilibrium solutions of plane Couette flow shown in figure 3(a,b) using methods
discussed in § 2.1. These solutions were computed at Re = 400 in a 2π, 6π computational
box and a 32×65×192 grid, with integration time T = 10 and time step dt = 0.0625,
resulting in a CFL number of about 0.7. The residuals ‖fT (u)− u‖/T of the discretized
equations began at roughly 10−3 for the windowed initial guesses and were reduced to
O(10−14) after six or seven iterations of the Newton-Krylov-hookstep algorithm. The
discretized solutions were found to approximate solutions of the continuous equations to
O(10−6), as discussed in § 2.1. The tails of the localized solutions drop to O(10−4) at the
z = ±3π edge of the computational domain. The computational cost is modest: about
one CPU-hour for each solution, running serially on a desktop computer with a 3.3 GHz
Intel i7-3960X processor.

2.6. Spanwise localized equilibria of plane Couette flow: properties

Figure 3 shows six spanwise-localized equilibrium solutions of plane Couette flow with
streamwise wavenumber α = 1 and Re = 400. Figure 3(a-d) were obtained by the
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Spanwise-localized equilibrium solutions of plane Couette flow at Re = 400.
(a,b) are localized solutions produced from the initial guesses shown in figure 2(c,d). See text for
discussion of (c-f). The plotting conventions are the same as in figure 2, but additional isosurfaces
of streamwise velocity at u = 0.18 are plotted in red to show the positions of high-speed streaks
near the lower wall (symmetric high-speed streaks near the upper wall are not shown). The
z ∈ [−3π/2, 3π/2] subset of the Lx, Lz = 2π, 6π computational domain is shown.

localization and search methods outlined in § 2.5, (a,b) as described in detail in § 2.5
and (c,d) by increasing the core region of the window to fit three and four copies of
the concentrated vortex structures respectively. Solutions (a-d) show that it is possible
to obtain localized versions of EQ7 with 1,2,3, and 4 copies of the basic concentrated
vortical structure shown in isolation in (a), by choosing appropriate centers of symmetry
and width of the core region of the windowing function. We will refer to the solutions
(a,b,c,d) as EQ7-1,2,3,4 respectively. Odd-numbered solutions have 〈σxy, τxσz〉 symmetry
and even-numbered solutions 〈σxy, σz〉.

Figure 4(a) shows a bifurcation diagram for the EQ7-1,2,3,4 solutions. Note that each
of these solutions lies on a distinct solution branch. This is in contrast to the localized
versions of the NBCW solutions, for which all solutions with the same symmetry lie
on a single solution branch, and additional copies of the fundamental structure grow at
the fronts in a continuous fashion along the solution branch while the internal structure
remains constant. For the EQ7-2,4 solutions, the number of rolls stays constant under
continuation while the distance between them changes. For example, the points marked
‘b’ and ‘e’ on the lower and upper branches of EQ7-2 in figure 4(a) are shown in fig-
ure 3(b,e). Similarly, points ‘d’ and ‘f’ on the EQ7-4 solution branch in figure 4(a) are
shown in figure 3(d,f), with a similar change in internal solution structure. The odd
solutions EQ7-1,3 behave somewhat differently. When EQ7-3 is continued from ‘c’ in
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(a) (b)

Figure 4. Continuation in Reynolds number of localized solutions. (a) Shear rate I
versus Re for localized equilibria of plane Couette flow. Labeled points correspond to solutions
depicted in figure 3(a-f). (b) Bulk velocity deficit Ud versus Re for localized traveling waves of
plane Poiseuille flow. TW1-2 has two distinct branches which appear to overlap at this resolution.
Labeled points correspond solutions in figure 9(a-d). See equations (2.5) and (3.1) for definitions
of I and Ud.

figure 4(a) to the opposite (lower) branch, the middle alternating rolls of figure 4(c)
weaken while the outer rolls remain constant (not shown). For EQ7-1, continuation of
‘a’ in figure 4(a) to the opposite (upper) branch increases the magnitude of the rolls and
streaks shown in figure 4(a). The vertical axis of the bifurcation diagram is the shear
rate

I =
1

2Lx

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

(
∂u

∂y

∣∣∣∣
y=1

+
∂u

∂y

∣∣∣∣
y=−1

)
dx dz (2.5)

Note that this shear is defined in terms of the perturbation velocity field u rather than to-
tal velocity utot = u+yex and is unnormalized with respect to Lz, so that the shear value
of a spanwise-localized solutions is independent of the choice of Lz for the computational
domain.

The spatial structure of EQ7-1 and EQ7-2 is illustrated in more detail in figure 5.
Figure 5(a-e) shows the cross-stream velocity [v, w](yz) for EQ7-1 in five streamwise-
normal cross-sections spaced evenly between x = −π and x = 0, which are the front face
and the middle of the boxes in figure 3(a,b). The blue isosurface of signed swirling strength
in the front half of the box in figure 3(a) appears here as a concentrated counter-clockwise
vortex that begins just below and to the left of the origin at x = −π in (a), increases in
strength and moves upward and to the right in (b-d), and ends above and to the right of
the origin at x = 0 in (e). By the τxσz symmetry of EQ7-1, the equivalent quiver plots
for x = 0 through x = π would be the z-mirror images of (a-e), showing a concentrated
clockwise vortex starting below and to the right of the origin and moving upwards and
leftwards, and corresponding to the green isosurface of signed swirling strength in the
back half of the box in figure 3(a). Likewise, the predominant features of EQ7-2 shown
in figure 3(f-j) are two z-symmetric counter-rotating vortices that begin near the lower
wall at x = −π in (f), and rise upwards and closer together in (g-j). Due to EQ7-2’s σxy
symmetry, cross-sections from x = 0 to π would appear as the y-mirror images of (j-f),
with a pair of nearby counter-rotating vortices in the lower half of the (y, z) plane rising
and separating, as in the back half of figure 3(b). The clear and distinct concentrations
of circulating fluid in figure 5 constitute our main justification for speaking of “regions of
concentrated vortical structure” and show that isosurface plots of signed swirling strength
are not misleading but rather show precisely where such regions lie.
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 5. Cross-sections of spanwise-localized equilibrium solutions of plane Couette
flow. (a-e) Quiver plots of [v, w](y, z) for EQ7-1 at x = {−π,−3π/4,−π/2,−π/4, 0} with y
vertical and z horizontal. (f-j) EQ7-2 at same x values. α = 1 and Re = 400 for both. Compare
to the same solutions shown with isosurfaces of signed swirling strength in figure 3(a) and (b);
the cross-sections here are evenly spaced along the front half of those figures. The z ∈ [−π,π]
subset of the full z ∈ [−3π, 3π] computational domain is shown.

(a) (c)

(b) (d)

Figure 6. Streamwise-averaged roll-streak structure of spanwise-localized equilib-
ria of plane Couette flow. (a) Quiver plot of x-average [v, w](y, z) and (b) contour plot of
x-average u(y, z) for EQ7-1 with y vertical and z horizontal. (c,d) Same for EQ7-2. Both solutions
are shown at α = 1 and Re = 400. Contour lines are plotted at levels u = ±{0.03, 0.09, 0.15},
with negative values in dashed lines positive in solid. Quiver plots are autoscaled. The z ∈ [−π,π]
subset of the full z ∈ [−3π, 3π] computational domain is shown.
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symmetry α, γ Re Lx, Lz grid accur. tails pos. λr max λr
NBCW 〈τxσz, τzσxyz〉 1, 2 400 2π,π 20×49×36 10−7 - 1 0.047
NBCW 〈τxσz, τzσxyz〉 1, 2 400 2π, 6π 20×49×216 10−7 - 5 0.047
EQ7 〈σxy, τxz, τxσz〉 1, 2 400 2π,π 24×65×36 10−8 - 3 0.070
EQ7 〈σxy, τxz, τxσz〉 1, 2 400 2π, 6π 24×65×216 10−8 - 21 0.070
EQ7-1 〈σxy, τxσz〉 1,− 400 2π, 6π 32×65×192 10−6 10−5 4 0.047
EQ7-2 〈σxy, σz〉 1,− 400 2π, 6π 32×65×192 10−8 10−4 6 0.066
EQ7-3 〈σxy, τxσz〉 1,− 400 2π, 6π 32×65×192 10−7 10−4 12 0.058
EQ7-4 〈σxy, σz〉 1,− 400 2π, 6π 32×65×192 10−7 10−4 13 0.064

Table 1. Characteristics of equilibrium solutions of plane Couette flow. The last two
columns show the number of eigenvalues with positive real part and the maximum real part
respectively. Accuracy and tails are as described in § 2.1.

The mean roll-streak structure of EQ7-1 and EQ7-2 is illustrated in Figure 6. The four
counter-rotating vortices surrounding the origin in figure 6(a) result from x-averaging
the counter-clockwise vortex that slopes upwards and rightwards from x = −π to 0 in
figure 3(a) and figure 5(a-e) with its clockwise τxσz-symmetric counterpart that slopes
upwards and leftwards from x = 0 to π. These four vortices create the pattern of al-
ternating positive and negative streamwise streaks (relative to laminar flow) shown in
(b) by advecting high-speed fluid (utot = ±1) from the walls towards the interior in the
region near z = 0, and low-speed fluid (utot ≈ 0) from interior towards the walls for
larger z. Figure 3(c,d) shows the corresponding mean roll-streak structure for EQ7-2;
here the doubling of the basic concentrated vortex structure compared to EQ7-1, appar-
ent in figure 3(b), results in the eight counter-rotating mean vortices shown in (c) and
an increased pattern of alternating streamwise streaks shown in (d).

Table 1 summarizes physical characteristics and discretization properties of the EQ7-
1,2,3,4 solutions in comparison to the periodic NBCW and EQ7 solutions. The NBCW so-
lution has a single unstable eigenvalue in its fundamental domain Lx, Lz = 2π/α, 2π/γ =
2π,π, but additional subharmonic instabilities appear when the eigenvalue calculation is
performed in domains that hold several copies of the periodic structure. The additional
four spanwise subharmonic instabilities for NBCW at Lx, Lz = 2π, 6π consist of two
additional real eigenvalues, each of which appears twice, corresponding to eigenfunctions
at two different phases in z. Similar calculations revealed additional streamwise subhar-
monic instabilities for NBCW, and similar considerations apply for EQ7. The numbers
of unstable eigenvalues for EQ7-1,2,3,4 are comparable to the instability of NBCW when
subharmonics compatible with the Lx, Lz = 2π, 6π domain are included. We are not
aware of previous calculations of subharmonic instabilities for the NBCW solution. The
existence of subharmonic instabilities means that NBCW is more unstable as a repeated
pattern in an extended domain than as a single structure in a minimal flow unit. This is
consistent with the observation of Jiménez et al. (1996) that such states are visited less
frequently in extended flows, and it suggests stabilizing an experimental flows about the
NBCW solution would be require higher-dimensional control strategies than suggested
by the eigenvalue analysis in the minimal flow unit. More broadly, the results in table 1
suggest that instability might be best approached as an extensive property of turbulent
flow.
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3. Traveling wave solutions of channel flow

In this section we extend the results of § 2 to Poiseuille (channel) flow conditions. For
the first set of solutions, we use a numerical continuation method similar in spirit to
Waleffe’s homotopy of the NBCW solution between plane Couette and “half-Poiseuille”
flow with no-slip at the lower wall and free-slip conditions at the upper wall (Waleffe 1998,
2001). When extended by symmetry to full channel conditions, Waleffe’s continuation
produces a traveling-wave solution symmetric about the channel midplane, with two
NBCW-like roll-streak structures, each positioned in the high-shear region near either
wall, and mirror symmetric (σy) to each other across the midplane.

In the present study, we continue the EQ7 solutions from plane Couette to full channel
conditions, enforcing no-slip boundary conditions on both walls throughout. The contin-
uation is done in two stages: first with fixed wall speed and increasing pressure gradient,
then fixed pressure gradient and decreasing wall speed. As in § 2.1, we decompose the
total velocity field into a base flow and a deviation, utot(x, t) = u(x, t)+U(y) ex, and the
total pressure field into ptot = p(x, t) + x dP/dx, where dP/dx is a parametric constant
corresponding to the externally imposed mean pressure gradient. To make the decompo-
sition unique, we specify that the fluctuation pressure p is periodic (so that the spatial
mean of ∇p is zero), and that the laminar velocity profile satisfies the no-slip conditions
at the walls and balances the imposed mean pressure gradient, dP/dx = νU ′′, where ν is
the kinematic viscosity of the fluid. Consequently the base flow is the laminar solution for
the given viscosity, mean pressure gradient, and wall speed, and the fluctuation velocity
satisfies Dirichlet conditions at the walls.

The Navier-Stokes equations again take the form of (2.1). The Reynolds number Re =
Ūh/ν is based on a velocity scale Ū appropriate to the flow as it transforms from plane
Couette to pressure-driven Poiseuille conditions, namely, Ū is half the relative wall speed
when continuing in pressure gradient and the centerline velocity of the laminar base flow
when continuing in wall speed (Ū = |dP/dx| h2/(2ν)). Thus in nondimensional terms
the continuation is first in mean pressure gradient dP/dx from 0 to −2/Re with wall
speeds fixed at U(±1) = ±1 (equivalently from U(y) = y to U(y) = 1 + y − y2), and
then continuation in wall speed from 1 to 0 with mean pressure gradient held fixed at
Px = −2/Re (equivalently from U(y) = 1 + y − y2 to U(y) = 1 − y2). For channel flow
conditions U(y) = 1−y2 and dP/dx 6= 0, eqn. (2.1) and boundary conditions are invariant
under any combination of x and z translations and reflections about the y = 0 and
z= 0 midplanes; thus the symmetry group of channel flow is 〈σy, σz, τ(∆x,∆z)〉, where
σy : [u, v, w](x, y, z)→ [u,−v, w](x,−y, z). Traveling waves are computed as solutions of
fT (u)− τ(cxT, 0)u = 0, where f t is the finite-time integration of (2.1) and τ(cxt, 0) is a
streamwise shift of length cxt with the wavespeed cx a free parameter.

3.1. Spatially periodic traveling wave solutions of channel flow

TW1: Figure 7(a) and figure 8(a,d) show a spatially periodic traveling-wave solution of
channel flow with symmetry 〈σy, σz, τxz〉 obtained by continuation from plane Couette
conditions, as described above. The starting point for continuation was the spatially
periodic EQ7 equilibrium of plane Couette flow at Re = 2000 and α, γ = 1, 2; the TW1
channel traveling wave has the same spatial periodicity and is shown at Re = 2300. Note
that TW1 is mirror symmetric about the y = 0 midplane. The y mirror symmetry is most
clearly seen in the streamwise-averaged plots of cross-stream and streamwise velocity in
figure 8(a,d). Although σy symmetry is within the symmetry group of channel flow, we
did not expect the continuation to produce a solution with this symmetry, since it was
neither present in the initial plane Couette solutions nor allowed in the intermediate
steps in the continuation from plane Couette to channel conditions. Instead, we expected
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(a) (b) (c)

Figure 7. Spatially periodic traveling waves of channel flow with decreasing wal-
l-normal symmetry. (a) TW1, constructed by continuing EQ7 from plane Couette to chan-
nel conditions, has symmetry group 〈σy, σz, τxz〉. Isosurfaces of signed swirling strength are at
s = ±0.04 are shown in green/blue. High-speed streaks near the lower wall are shown by iso-
surfaces of streamwise velocity at u = 0.02. High-speed streaks near the upper wall, symmetric
to those near the lower wall, are not shown as isosurfaces but they are indicated in the contour
plots of streamwise velocity in the back plane. (b) TW2, found from an initial guess judiciously
chosen from numerical simulation data, has symmetry group 〈σz, τxz〉. Isosurfaces of signed
swirling strength at s = ±0.10 are shown in green/blue, and high-speed streaks near the lower
wall are shown by isosurfaces of streamwise velocity at u = 0.03. There are similar but weaker
vortex structures and high-speed streaks near the upper wall, but they do not appear at these
levels for the isosurfaces. Both (a) and (b) are shown at α, γ = 1, 2 and Re = 2300. (c) TW3,
constructed by continuation in Reynolds number from TW2 and further symmetrization and
Newton-Krylov refinement, has 〈σz, τxz〉 but periodicity α, γ = 1, 6, and is shown at Re = 4000.
Isosurfaces of signed swirling strength are at s = ±0.9 and u = 0.03. Each back plane shows
contour plot of streamwise velocity at levels u = {0.03,−0.03,−0.09,−0.15, ...}, positive in solid
lines and negative in dashed.

(a) (b) (c)

(d) (e) (f)

Figure 8. Streamwise-averaged roll-streak structure of spanwise-periodic traveling
waves of channel flow. Vector plots of x-average [v, w](y, z) and contour plots of x-average
u(y, z) for (a,d) TW1, (b,e) TW2, and (c,f) TW3, with the same spatial and Reynolds parameters
as in figure 7. Contour lines are shown at levels u = −0.2,−0.1 (dashed) and u = 0.025 (solid),
with an additional negative contour line is shown at u = −0.3 in (e). The vector plots are
autoscaled. Axes are z horizontal and y vertical.

that the increasing y asymmetry under continuation in pressure gradient would push
the vortex structures towards the lower wall, where the shear of the base flow is higher
(|U ′(−1)| = 3, compared to |U ′(1)| = 1, for the base flow U(y) = 1+y−y2 attained at the
end of the pressure continuation), and that this y-asymmetry would be maintained during
continuation in wall speed down to U(y) = 1 − y2. However, it turned out that weak
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vortices formed near the upper wall under pressure continuation and grew in strength
during wall-speed continuation until the solution gained σy symmetry as the wall speed
reached zero. In terms of the symmetry groups, the starting plane Couette solution
had symmetry group 〈σxy, σz, τxz〉, continuation to nonzero dP/dx broke σxy symmetry,
and σy was gained at the final step of wall-speed continuation, resulting in symmetry
〈σy, σz, τxz〉. The structure of vortices and streaks in TW1 can roughly be described as
two copies of EQ7 stacked on top of each other, with the upper copy either phase-shifted
by half a wavelength in x or having [v, w] reversed in sign via mirror symmetry in y. This
is apparent from comparison of TW1 in figure 7(a) to EQ7 in figure 1(b) and EQ7-1 in
3(b). The stacking across the midplane is somewhat like the radially opposed structure
in the M2 pipe flow solution in figure 3(a) of Pringle et al. (2009), though TW-1 shows
mirror symmetry about y = 0, whereas M2 is radially antisymmetric.

TW2: Figure 7(b) and figure 8(b,e) show a spatially periodic traveling-wave solution of
channel flow with asymmetry in y and symmetry 〈σz, τxz〉, obtained from an initial guess
from turbulent simulation data (Viswanath 2007; Gibson et al. 2009). Specifically, we
z-mirror-symmetrized an arbitrary turbulent velocity field of channel flow at Re = 3750
in a 2π, 1π box by applying u → 1/2 (1 + σz)u and then quenched the turbulent field
by lowering the Reynolds number and continuing time integration with the bulk velocity
fixed at 2/3 and the σz symmetry enforced by projection at regular intervals. After some
experimentation, we found that after quenching to Re = 2650, the fine-scale structure of
the velocity field and the spatial-mean wall shear decreased quickly, the latter reaching
a local minimum after about 50 time units and growing slowly again for another 50 time
units before resuming a high level of wall shear with rapid fluctuations. The smoothness
and length of this minimum suggested a close pass to a hyperbolic edge state. Using a
velocity field from this minimum as an initial guess for a Newton-Krylov search produced
a numerically exact spatially periodic, wall-localized traveling wave solution of channel
flow with 〈σz, τxz〉 symmetry.

The y asymmetry of TW2 is exaggerated in figure 7(b) by the binary character of
isosurface plots. In fact at Re = 2300 TW2 has weaker vortex structures near the upper
wall with swirling strength comparable to those of TW1, and weaker streaks there as
well. Both the vortices and streaks near the upper wall are visible in the streamwise-
average plots of TW2 in figure 8(b,e). Note also that the swirling strength isosurfaces
of TW2 in figure 7(b) are at s = ±0.10, over twice the magnitude of those for TW1 in
figure 7(a) at s = ±0.4. Compared to the four layers of counter-rotating mean vortices
stacked symmetrically about y = 0 in TW1 (see Figure 8(a,d)), TW2 has two layers of
counter-rotating mean vortices below y = 0 and a single layer of vortices above y = 0,
and these vortices have the same orientation as the vortices below them. And though it is
not clear from the autoscaled vector plots, the mean vortices of TW2 near the lower wall
are about three times the magnitude of those of TW1, as measured by magnitudes of the
[v, w] velocities, and the mean vortices of TW2 above y = 0 are of comparable magnitude
to those of TW1. However, the y-asymmetry of TW2 increases as the Reynolds number
is increased (see TW3) and as z-periodicity is relaxed (see TW2-1 and TW2-2).

TW3: Figure 7(c) and figure 8(c,f) show a wall-localized, spanwise and streamwise
periodic traveling wave of channelflow with symmetry 〈σz, τxz〉, discovered through con-
tinuation of TW2 in Reynolds number. The fundamental z wavenumber of TW2 is γ = 2,
but as as Re increased towards 4000, the structure at this wavenumber weakened and
structure at γ = 6 grew, while the structure away from the lower wall weakened substan-
tially until it became nearly laminar. TW3 was computed by zeroing all modes in TW2
at Re = 4000 with γ < 6 and refining this initial guess to an exact traveling wave with
Newton-Krylov-hookstep search. The resulting TW3 solution has periodicity α, γ = 1, 6
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(a) (b)

(c) (d)

Figure 9. Spanwise-localized traveling wave solutions of channel flow. (a) TW1-1,
(b) TW1-2, (c) TW2-1, and (d) TW2-2. (a,b) TW1-1 and TW1-2 are 〈σy, τxσz〉 and 〈σy, σz〉
symmetric traveling waves obtained by localizing TW1 in two different z phases. (c,d) TW2-1
and TW2-2 are τxσz and σz symmetric traveling waves obtained by localizing TW2 in two
different z phases. Plotting conventions are the same as in figure 7, but with isosurfaces of signed
swirling strength and streamwise velocity at (a,b) s = ±0.05, u = 0.05, and (c,d) s = ±0.09,
u = 0.08. Contour lines of streamwise velocity are shown in the back y, z plane at levels u = 0.03
(solid lines) and (a,b) u = {−0.03,−0.09,−0.15}, (c,d) u = {−0.03,−0.09,−0.15,−0.21,−0.30}
(dashed). In (b) a high-speed streak near the upper wall, symmetric to that near the lower wall,
is suppressed to avoid visual clutter. By contrast, (c,d) show true asymmetry in high-speed
speed streaks: (c) has high-speed streaks near the lower wall only, and in (d) the streaks near
the upper wall are substantially weaker, below the given isosurface levels. Solutions are shown
at Re = 2300 in z ∈ [−3π/2, 3π/2] subsets of their full Lx, Lz = 2π, 6π computational domains.

and symmetry 〈σz, τxz〉, where τxz is understood as involving a half-cell shift in z with re-
spect to the smaller `z = π/3 periodic length. Its most notable property is its very strong
localization in the wall-normal direction, as evidenced by figure 8(c,f). This is similar to
the strong near-wall concentration of the higher-order M-class pipe flow solutions shown
in figure 3(c,d) of Pringle et al. (2009).

3.2. Spanwise localized traveling wave solutions of channel flow

In this section we construct spanwise-localized traveling wave solutions of channel flow
by windowing the spanwise-periodic travelings waves of § 3.1 TW1 and TW2 in different
spatial phases. The resulting solutions are illustrated in figure 9, figure 10, and figure 11.

TW1-1, shown in figure 9(a), was formed by phase-shifting TW1 in z by π/4 to
give it symmetry group 〈σy, σzτx, τxz〉, extending this periodic solution from a 2π, 1π
to a 2π, 6π box, windowing the extended periodic solution, and then applying Newton-
Krylov-hookstep refinement to the windowed initial guess, producing a spanwise-localized
traveling wave with 〈σy, σzτx〉 symmetry. The windowing parameters a, b = 0.5, 0.4 were
chosen to isolate the central vortex structures in swirling-strength plots. It did not take
a great deal of effort to find windowing parameters that gave a successful initial guess;
we merely adjusted a and b by tenths until swirling-strength plots of the initial guess ap-
peared similar to the resultant solution in figure 9(a). The initial guess for the wave speed
was set to the wave speed of the underlying periodic solution TW1, and the pressure gra-
dient was held fixed at dP/dx = −2/Re where Re = 2000. The Newton-Krylov-hookstep
search converged to machine precision in six steps, consuming about half an hour of
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure 10. Cross-sections of spanwise-localized, near-wall traveling waves of channel
flow. (a)-(e) Vector plots of [v, w](y, z) for TW2-1 at x = {−π,−0.6π,−0.2π, 0.2π, 0.6π}, (f)-(j)
same for TW2-2, with y vertical and z horizontal. Both solutions are at α = 1 and Re = 2300.
The z ∈ [−π,π] subset of the full z ∈ [−3π, 3π] computational domain is shown.

(a) (c)

(b) (d)

Figure 11. Streamwise-averaged roll-streak structure of spanwise-localized traveling
waves of channel flow. (a) Vector plot of x-average [v, w] and (b) contour plot of x-average
u(y, z) for TW2-1. (c,d) Same for TW2-2. α = 1, Re = 2300 for both solutions. Contour lines
are plotted at levels u = {−0.25,−0.15,−0.05, 0.05, 0.15}, with negative values in dashed lines
and positive in solid. Vector plots are autoscaled. The z ∈ [−π,π] subset of the full [−3π, 3π]
computational domain is shown.
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single-core CPU time on the machine described in § 2.5, for a 24×81×256 discretization
of the 2π, 6π computational domain. The computed solution turned out to be smoother in
x and z than the periodic solution on which it was based, enough that 10−6×10−10×10−6

truncation levels were retained on a reduced grid of 20×81×192. Similarly TW1-2
figure 9(b) was found by refining an initial guess formed from windowing TW1 in in
its z-phase with 〈σy, σz, τxz〉 symmetry and with windowing parameters a, b = 1.2, 0.4,
resulting in a traveling wave solution with 〈σy, σz〉 symmetry.

TW2-1 and TW2-2, shown in figure 9(c,d), are likely the most interesting solutions
presented in this paper, as they represent traveling wave solutions that are spanwise local-
ized and strongly concentrated near a single wall and appear similar to important near-
wall flow structures identified in previous studies. TW2-1 was formed by windowing TW2
in its z-phase with symmetry 〈τxσz, τxz〉 and windowing parameters a, b = 0.6, 0.4 to get
an initial guess with τxσz symmetry, and refining that with Newton-Krylov-hookstep.
We were unable to form TW2-2 by the phase-shifting, windowing, and refining pro-
cedure employed for other localized solutions. Instead TW2-2 was formed by shifting
TW2-1 leftwards in z until its right-hand high-speed streak was centered on z = 0, ex-
tending the shifted field from negative to positive z by z-mirror symmetry, and then
refining this initial guess with Newton-Krylov-hookstep. We note that TW2-1 and TW2-
2 required higher resolution than TW1-1 and TW1-2 to adequately resolve the stronger
vortex structure. The computations of TW2-1 and TW2-2 from their initial guesses took
about seven CPU-hours each.

Each of the traveling wave solutions depicted in figure 9 is formed from variations of
very similar basic structure, which mostly clearly seen in isolation in TW2-1 in figure 9(c).
Near the lower wall there is an x-periodic chain of concentrated vortices, alternating in
sign of circulation (clockwise/counter-clockwise), and nearly aligned with the x-axis but
tilting slightly in the wall-normal and spanwise directions, as shown in figure 10(a-e).
The tilting of the chain of alternating vortices results in a nonuniform x-average in the
cross-stream flow, specifically, a pair of counter-rotating mean vortices near the wall,
figure 11(a). The mean vortices draw low-speed fluid upwards between them and high-
speed fluid downward on either side, producing the mean high-speed streaks on either side
of the mean vortex pair, depicted by solid contour lines in figure 11(b). The streamwise
momentum exchanged induced by the near-wall mean vortices has a net negative effect:
the region of mean streamwise flow slower than laminar indicated by negative (dashed)
contour lines in figure 11(b) is larger in both y, z area and magnitude than the high-speed
streaks that outpace laminar flow, indicated by solid contour lines. Thus the net effect of
the roll-streak structure is a decrease of bulk flow relative to laminar for a fixed pressure
gradient. TW2-2 roughly consists of two copies of TW2-1’s basic structure, repeated with
mirror-symmetry about the z = 0 plane. This is evident from comparison of TW2-1 and
TW2-2 in figure 9(c) and (d), figure 10(a-e) and (f-g), and figure 11(a,b) and (c,d). TW1-
1 and TW1-2 have similar structure to TW2-1 and TW2-0, but with mirror symmetry
in y and weaker magnitudes of vorticity (by roughly a factor of two) and bulk velocity
deficit relative to laminar (by a factor of four or more).

TW2-1 is very similar to near-wall coherent structures observed in numerical simula-
tions by Jeong et al. (1997) and analyzed by Schoppa & Hussain (2002), consisting of
alternating, tilted streamwise vortices centered over a sinuous low speed streak. Jeong
et al. (1997) educed these structures from conditional samples of numerical simulation
data, and Schoppa & Hussain (2002) analyzed them as the outcome of nonnormal tran-
sient growth on a base flow of streamwise-constant, spanwise-varying near-wall streaks.
Compare, for example, the tilted alternating vortices of TW2-1 evident in figure 9(c) to
figure 26 of Schoppa & Hussain (2002). Though these two figures use different visual-
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ization schemes (swirling strength versus streamwise vorticity) we have verified that the
gross structure is essentially the same with either. The relative orientations of alternat-
ing circulation and tilting agree: the green vortex in figure 9(c) has positive streamwise
vorticity and tilts upward in y and towards negative z, as does SP in Schoppa & Hussain
(2002); whereas blue and SN have negative streamwise vorticity and tilt towards positive
z. The tilting angles are roughly comparable: 7 degrees wall-normal and ±8 spanwise
tilts for the vortices in TW2-1, compared to 9 and ±4 degrees from Jeong et al. (1997).
Figure 9(c) shows only the high-speed streaks on either side of the alternating vortices;
however the low-speed streak beneath the vortices is evident in figure 11(b). The low-
speed streak of TW2-1 shows sinuous streamwise variation when viewed as a function of
x, z (not shown), but the variation in x is weaker than that shown in figure 25 of Schoppa
& Hussain (2002). The length scales in wall units match closely: TW2-1 has streamwise
periodic length of 425 wall units, and the tilting vortices extend over about 60 spanwise
units and are confined to y+ 6 60, quite close to the 400 streamwise, 60 spanwise, and
y+ 6 60 wall unit lengths evident in figure 6 of Jeong et al. (1997).

Exact correspondence between TW2-1 and the cited structures should not be expected,
due to differences in their formulation and flow conditions. We conjecture, however, that
TW2-1 is formed from the streaky base flow and transient growth mode elements identi-
fied by Schoppa & Hussain (2002) in the same that the NBCW solution of plane Couette
flow is formed from the rolls, streaks, and sinuous instability elements of Waleffe’s self-
sustaining process (Waleffe 2003). Likewise, we suppose that observations of alternating
tilted streamwise rolls near the wall in Jeong et al. (1997) result from close passes of the
flow to the unstable invariant TW2-1 solution, much as the observed roll-streak struc-
tures of Hamilton et al. (1995) result from close passes to the upper and lower branches
of the NBCW solution. TW2-2 bears some degree of resemblance to the lambda vortices
that develop as secondary instabilities of Tollmien-Schlichting waves in spatially devel-
oping flow. The Λ-structure shown in Saiki et al. (1993) figure 2(b) is evident in TW2-2
in figure 9(d), and the cross-stream vector plots of TW2-1 and TW2-2 in figures 9 and 11
resemble the cross-sections of near-wall lambda vortices of developing channel flow shown
in Saiki et al. (1993) figures 10 and 11. We intend to pursue the connections between
TW2-1,2 and previously identified coherent flow structures in future research.

Figure 4 shows a bifurcation diagram for TW1-1,2 and TW2-1,2 under continuation
in Reynolds number. TW1-1,2 and TW2-2 are each born in saddle-node bifurcations
whose upper and lower branches continue smoothly to large Reynolds numbers. The
solution curve for TW2-1 is more complex; we were not able to continue it past the point
(Re,Ud) = (1797, 0.395). The vertical axis of the bifurcation diagram is the bulk velocity
deficit, which we define as

Ud = − 1

2Lx

∫ Lx/2

−Lx/2

∫ 1

−1

∫ Lz/2

−Lz/2

u(x) dx dy dz (3.1)

Since u(x) is the perturbation velocity relative to laminar flow at the same Reynolds
number and pressure gradient, Ud measures the deficit in streamwise velocity of the
traveling wave relative to that laminar flow, integrated over the flow domain. Physical
characteristics and discretization parameters of the computed traveling-wave solutions of
channel flow are summarized in table 2.
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symmetry α, γ Re cx Lx, Lz grid accur. tails pos. λr max λr
TW1 〈σy, σz, τxz〉 1, 2 2300 0.673 2π,π 24×81×48 10−7 - 7 0.041
TW1-1 〈σy, τxσz〉 1,− 2300 0.674 2π, 6π 20×81×192 10−6 10−5 6 0.033
TW1-2 〈σy, σz〉 1,− 2300 0.674 2π, 6π 20×81×256 10−6 10−5 8 0.034
TW2 〈σz, τxz〉 1, 2 2300 0.564 2π,π 32×97×64 10−6 - 29 0.025
TW2-1 τxσz 1,− 2300 0.661 2π, 6π 24×97×324 10−6 10−5 17 0.036
TW2-2 σz 1,− 2300 0.648 2π, 6π 24×97×324 10−6 10−5 36 0.032
TW3 〈σz, τxz〉 1, 6 4000 0.475 2π,π/3 32×109×36 10−7 - 9 0.035

Table 2. Characteristics of localized traveling-wave solutions of channel flow. The
streamwise wave speed cx is in nondimensionalized units where the centerline velocity of laminar
flow is Ū = 1. Other quantities are as described in table 1.

4. Discussion

4.1. Exponential decay of tails

The spanwise localized solutions presented in this paper display a three-part structure: a
core region that closely resembles a periodic solution, a transition region, and weak tails
that decay to laminar flow. In this section we show that the tails of spanwise-localized
streamwise-periodic equilibria are dominated by a mode that decays exponentially at
e−α|z|, where α is the fundamental streamwise wavenumber, and that the structure of the
tails depends on flow parameters α,Re, the laminar flow profile U(y), and the wavespeed
c, but not on the details of the solution’s core region.

As the tails of a spanwise-localized equilibrium or traveling wave approach laminar
flow, the perturbation velocity u approaches zero, so we expect u to approximately
satisfy the linearized form of (2.1) in which u · ∇u is set to zero,

∂u

∂t
+ U

∂u

∂x
+ v U ′ ex = −∇p+

1

Re
∇2u, ∇ · u = 0. (4.1)

We look for normal-mode solutions of the form

uj,γ(x) = ũj,γ(y) ei(jα(x−ct)+γz), pj,γ(x) = p̃j,γ(y) ei(jα(x−ct)+γz) (4.2)

where α is real and γ = γr + iγi has γi > 0 for tails that decay exponentially as z →∞.
The slowest decaying normal mode solution, with the smallest positive γi, will dominate
the tails as z → ∞. For the remainder of this section we drop the j, γ subscripts. To
eliminate pressure we convert to velocity-vorticity form by taking the y-components of
the curl and the curl of the curl of (4.1)(

∂

∂t
+ U

∂

∂x

)
η + U ′vz =

1

Re
∇2η,(

∂

∂t
+ U

∂

∂x

)
∇2v − U ′′vx =

1

Re
∇4v, (4.3)

where η = uz − wx is the wall-normal vorticity. Boundary conditions are η(x,±1, z) = 0
and v(x,±1, z) = v′(x,±1, z) = 0.

Eqn. 4.3 and boundary conditions permit a number of types of solution. Where sym-
metries allow, the solution that dominates behavior in the tails of localized plane Couette
equilibria and traveling waves turns out to be the trivial solution v = η = 0. This so-
lution in conjunction with the divergence-free condition and the ansatz (4.2) requires
that ũxx = −ũzz and w̃xx = −w̃zz, which is satisfied by γ = ±ijα and w̃ = ±ijũ, the
different signs governing exponential decay in the different limits z → ±∞. The j = 1
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(a) (b)

Figure 12. Exponential decay in the tails of spanwise localized plane Couette equi-
libria. (a) Componentwise decay rates for EQ7-1 at α = 1/2, Re = 600: u, v, w (solid lines)
scale as e−αz, e−2αz, e−αz respectively (dotted lines). (b) Decay of ‖w‖∞ for EQ7-1 (solid lines)
compared to e−αz (dotted lines) at Re = 600 and several values of α.

mode with γ = ±iα and w̃ = ±iũ thus gives the slowest exponential decay rate (j = 0 is
ruled out since it does not decay and thus cannot be part of a z-localized solution). The
y component of (4.1) gives that ∂p̃/∂y = 0 so that p̃(y) = p̃ is a complex constant whose
magnitude and phase are set by the pressure conditions at the edge of the transition
region at some fixed value of z. The x component of (4.1) gives

ũ′′ − iαRe(U − c)ũ = iαRe p̃. (4.4)

The boundary conditions ũ(±1) = 0 set the homogeneous solution to zero, so that ũ
and thus w̃ are determined by the fixed value of p̃, the base flow profile U(y), and the
parameters α, c and Re. They are independent of the structure of the core-region solution
(except for differences of x phase between the ±z tails resulting from the symmetries
of the solution). Thus the v = η = 0 solution to the linearized Navier-Stokes equations
contributes to the tails an exponentially decaying mode of form [ũ(y), 0, iũ(y)]eiα(x−ct)−αz

as z →∞.
Figure 12 confirms that over a wide range of α, the tails of EQ7-1 are dominated by

u,w components that decay as e−αz. Figure 12(a) shows the ∞-norm of u, v and w as a
function of z for EQ7-1 at α = 1. In this context ‖u‖∞(z) is the maximum of |u(x, y, z)|
over x, y as a function of z. As argued above, the magnitudes of the u and w components
are equal in the tails and scale as e−αz. The higher-order e−2αz scaling for v results
from the quadratic nonlinear term in u1,γ , w1,γ that has been suppressed on the right-
hand side of (4.1) for the v0,γ equation for j = 0. For figure 12(b), we continued EQ7-1
parametrically in α and observed that the e−αz scaling holds over the explored range of
1/4 6 α 6 2. For further confirmation of the dominance of v = η = 0 modes, figure 13(a)
compares an x, y slice of streamwise velocity u(x, y, z) from EQ7-1 at a fixed z to (b) the
same as computed from (4.4).

The linearized equations for the tails have solutions other than v = η = 0; to show
these decay more rapidly than the v = η = 0 modes (for plane Couette flow), we reduce
eqn. 4.3 to the eigenvalue equations

iα(U − c)η̃ + iγU ′ṽ =
1

Re
(η̃′′ − (α2 + γ2)η̃), (4.5)

iα(U − c)(ṽ′′ − (α2 + γ2)ṽ)− iαU ′′ṽ =
1

Re
(ṽ′′′′ − 2(α2 + γ2)ṽ′′ + (α2 + γ2)2ṽ). (4.6)

The latter is the time-independent form of the familiar Orr-Sommerfeld equation for
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(a)

(b) (c)

Figure 13. (a,b) Asymptotic form of the tails of spanwise-localized equilibria of
plane Couette flow. Contours of streamwise velocity u(x, y) at fixed z: (a) a slice of EQ7-1
for α = 1 and Re = 400, at z = 11, where ||u||∞ ≈ 10−6, and (b) the asymptotic v = η = 0
normal mode solution. Contours are plotted at ±[0.15, 0.45, 0.75] times the maximum of u, with
negative values in dashed lines. (c) Exponential decay rate for three types of normal
modes in the tails of plane Couette equilibria at Re = 400. The minimal γi as a function of
α is plotted for (�) v = η = 0 solutions, (◦) solutions of (4.5) with ṽ(y) = 0, and (.) solutions
of (4.6).

three-dimensional disturbances. Equation (4.6) is independent of η̃ and the eigenvalues
γ can be found numerically for given α, c, Re, and U(y). The iγU ′ṽ coupling term in
(4.5) acts as a nonhomogeneous forcing, requiring particular solutions for η̃(y) to match
the eigenmodes of (4.6). Eigenvalues distinct from those found for (4.6) can be found
by solving (4.5) with ṽ(y) = 0. Figure 13(c) shows the minimal γi allowed by these two
equations as a function of α for plane Couette equilibria at Re = 400. Note that v = η = 0
modes have the smallest γi for α in the range shown (α < 2); thus these modes dominate
the behavior of the tails in all solutions with streamwise wavelength greater than π. It
should be noted, however, that streamwise constant (α = 0) modes can exist in domains
of any length Lx, and thus might play a dominant role in short (large α) domains if the
symmetries permit them.

4.2. Asymptotic scaling of streamwise Fourier harmonics

In this section we provide a numerical account of the large-Reynolds behavior of the peri-
odic and localized solutions developed in previous sections. In particular we measure the
scaling of various streamwise Fourier components of the solutions with Re, and we show
the development of critical layers at large Re. These features are key to the asymptotic
analysis of NBCW suggested by Wang et al. (2007) and developed into a complete the-
ory by Hall & Sherwin (2010). The main results are as follows. The streamwise Fourier
components of EQ7 and solutions related to it, localized and in channel conditions, obey
scaling laws similar to those of NBCW, albeit with different exponents and substantially
different magnitudes, suggesting that Hall & Sherwin (2010)’s asymptotic analysis could
be carried over to the new solutions. EQ8 and the y-asymmetric channel flow solutions,
in contrast, do not fit the asymptotic scaling framework so cleanly. All solutions appear
to have well-defined critical layers, however, and the critical layer is particularly simple
for EQ7 and its localized counterparts.

As suggested by Wang et al. (2007) and developed into a complete theory by Hall &
Sherwin (2010), a reduced PDE system can be developed for the spatially periodic NBCW
solution from an asymptotic analysis of its streamwise Fourier modes and the critical layer
that develops at large Reynolds numbers. Wang et al. (2007) showed numerically that



26 J.F. Gibson and E. Brand

NBCW has a simplified, quasi-2D structure in the limit of large Reynolds numbers, with
a balance between an O(1) streamwise-constant streaks, O(Re−1) streamwise-constant
rolls, and an O(Re−0.9) mode in the first (fundamental) streamwise Fourier harmonic,
which concentrates in a critical layer of thickness O(Re−1/3). Hall & Sherwin (2010) in
turn developed an asymptotic theory for NBCW based on vortex-wave interaction that
provides insight to the physics of how these components of NBCW balance, predicts their
scaling exponents, and which reduces the computation of the solution from a 3D Navier-
Stokes problem at large-Re to a 2D PDE at Re = 1 coupled with a linear wave evolution
equation. Specifically, the interactions of very small fundamental-mode streamwise waves
within the critical layer generate nonzero mean stresses that cause jumps in the pressure
and the normal derivative of roll velocity across the critical layer. The jump in roll shear
drives the mean rolls, which in turn drive the mean streaks. Hall & Sherwin (2010) show
that these effects balance to leading order in Re−1, and that the asymptotic theory also
reduces computation of the 3D steady state at high Reynolds number to a simpler 2D
calculation at unit Reynolds number coupled with a linear wave evolution equation.

This reduced quasi-2D PDE model of Hall & Sherwin (2010) is of particular interest
to us since a theoretical analysis of spanwise localization in solutions of Navier-Stokes
should be easier to develop in the context of a reduced model. There is strong numerical
evidence that a theory of localization in solutions of Navier-Stokes might be developed.
Schneider et al. (2010b) noted a remarkable resemblance between the x, y-averaged en-
ergy of the localized NBCW solutions and localized solutions of the 1d Swift-Hohenberg
equation found by Burke & Knobloch (2007). The similarity was made more remark-
able by Schneider et al. (2010a)’s demonstration that the localized NBCW solutions
undergo homoclinic snaking under continuation in Reynolds number, just as the local-
ized Swift-Hohenberg solutions do under continuations in their bifurcation parameter.
For Swift-Hohenberg, homoclinic snaking of localized solutions is quite well understood
theoretically via “spatial dynamics” (Burke & Knobloch 2007). Time independence re-
duces the 4th-order Swift-Hohenberg PDE for u(x, t) to 4th-order ordinary differential
equation (ODE) on u(x), which can then considered as a 4-dimensional dynamical sys-
tem where x plays the role of time. In this view, spatially periodic solutions correspond
to periodic orbits of the spatial dynamics, and spatially localized solutions correspond
to homoclinic orbits that start at the origin u = 0 at t→ −∞, grow away from it along
unstable direction, wander at finite amplitude for some time, and then reapproach u = 0
at t → ∞ along a stable direction. Localized solutions display approximately periodic
form in their core regions when the finite-amplitude excursion away from u = 0 makes
a number of circuits in the neighborhood of an unstable periodic orbit of the spatial
dynamics.

Thus the close correspendence between localized Navier-Stokes solutions and local-
ized Swift-Hohenberg solutions points to the possibility of a theoretical explanation of
localization in invariant solutions of Navier-Stokes. It also points to the importance of
a reduced PDE system describing the localized solutions, ideally to a 1d system in the
spanwise coordinate, to which the idea of spatial dynamics might be applied. We report
on the scaling of streamwise Fourier components and the development of a critical layer
in the plane Couette and channel solutions because they are essential ingredients for
developing such a reduced-order PDE model. We note that Deguchi et al. (2013) have
in fact extended the asymptotic analysis of Hall & Sherwin (2010) to the case of the
spatially periodic EQ7, for large Re and small α, and have identified α ∼ Re−1 as distin-
guished limit at which the reduced-order system breaks down. They also showed that the
spanwise-localized EQ7-1 can be produced by a simple continuation of EQ7 in spanwise
wavenumber.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Scaling of streamwise Fourier modes of plane Couette and channel so-
lutions. (a,b,c) Spatially periodic plane Couette equilibria NBCW, EQ7, EQ8, at α, γ = 1, 2.
(d,e,f) Spatially periodic channel flow traveling waves TW1, TW2, TW3, at α, γ = 1, 2. (g,h,i)
Spanwise localized solutions: EQ7-1 plane Couette equilibrium and TW1-1 and TW2-1 channel
flow traveling wave, at α = 1. The magnitude of various Fourier components of the velocity, as
measured by∞-norm is plotted against Reynolds number (see text). The labels s,r,1,2,3 indicate
the streaks û0, rolls [v̂0, ŵ0], and the 1st, 2nd, and 3rd streamwise Fourier harmonics û1, û2,
and û3.

The perturbation velocity field of equilibrium and traveling wave solutions can be
expressed as a sum of streamwise (x) Fourier modes in the form

u(x, t) =
∑
j

ûj(y, z)e
ijθ (4.7)

where θ = α(x− ct) and where û−j(y, z) = û∗j (y, z) so that u is real-valued. The stream-
wise constant mode û0 can be decomposed into streamwise streaks û0(y, z) and cross-
stream rolls [0, v̂0, ŵ0](y, z). Recall that u is the deviation from laminar flow U(y)ex, with
utot = u+U(y)ex and ûtot,0 = û0 +U(y), so that the streaks are defined relative to lami-
nar flow. Wang et al. (2007) define streaks relative to the z-averaged mean flow, but we do
not, since z-averaging is inappropriate for spanwise-localized solutions. Hall & Sherwin
(2010) refer to the first (fundamental) harmonic û1(y, z) or û1(y, z) exp(iα(x− ct))+c.c.
as the wave mode.

Figure 14 shows the scaling with Reynolds number of the magnitude of the streaks,
rolls, waves, and second and third harmonics for a number of plane Couette and channel
solutions. The magnitude is computed with the ∞-norm; for example, the magnitude
||û1||∞ of the wave is the maximum over x, y, z and the vector components [u, v, w] of
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j NBCW EQ7 EQ7-1 EQ7-2 TW1 TW1-1 TW1-2

0 streak 0.01 0.10 0.14 0.12 0.06 0.08 0.09
1 wave 0.85 0.77 0.90 0.83 0.80 0.80 0.82
0 roll 1.0 0.97 1.0 1.0 1.05 1.02 1.00
2 1.4 1.25 1.4 1.35 1.35 1.4 1.35
3 2.2 2.6 2.25 2.45 1.95 2.2 2.0

Table 3. Scaling exponents for streamwise Fourier harmonics of equilibrium and
traveling wave solutions of plane Couette and channel flow. Components of solutions
u scale as || · ||∞ = O(Re−µ) for the given values of µ.

u = û1(y, z)eiαx + û−1(y, z)e−iαx. A number of these solutions exhibit very clear scaling
of the form ||ûj ||∞ = O(Re−µj ). For example Figure 14(a) shows that for NBCW, the
streaks are O(1), the rolls O(Re−1), and the waves O(Re−0.85). The streak and roll
values scalings equal the theoretical predictions of Hall & Sherwin (2010), and the wave
scaling is within 2%. Note that the choice of ∞-norm changes the scaling exponent for
the NBCW wave component compared to the value of µ1 = 0.9 reported by Wang et al.
(2007).

EQ7 in figure 14(b) shows equally clear asymptotic scaling with exponents comparable
but not equal to those of NBCW. The same is true of all solutions derived from EQ7 by
parametric continuation and localization by windowing. Examples of such EQ7-related
solutions are shown in figure 14, namely (d) TW1, the spatially periodic traveling wave
of channel flow obtained from EQ7 by continuation; (g) EQ7-1, the spanwise localized
equilibrium of plane Couette flow obtained by windowing; and (i) TW-1, the spanwise
localized traveling wave of channel flow obtained by windowing TW-1. Scaling exponents
for these solutions plus EQ7-2 and TW7-2 are listed in table 3. It should be noted that the
magnitudes of Fourier harmonics of EQ7 and solutions derived from it are substantially
different from those of NBCW. For example, comparison of EQ7 in figure 14(b) to NBCW
in (a) shows that EQ7’s streaks are about a factor of three smaller than NBCW’s, and its
fundamental harmonic is about a factor of three larger, resulting in an order of magnitude
less scale separation between these components.

In contrast, the upper-branch and y-asymmetric solutions reported here have no clear
asymptotic scaling in streamwise Fourier harmonics and substantially poorer separation
of scales, namely figure 14(b) EQ8, the upper branch of EQ7; (e) TW2, a spanwise
periodic traveling wave of channel flow obtained from judiciously chosen DNS data; (f)
TW3, a higher-wavenumber spanwise periodic traveling wave of channel flow obtained
from continuation in Re of TW2; and (i) TW2-1, a spanwise localized traveling wave
of channel flow obtained from windowing TW2. TW2-2 (not shown) is similar to TW2-
1. Among these, none of EQ8, TW2, TW2-1, or TW2-2 continue in a straightforward
fashion to higher Reynolds number; instead the solutions curves turn around at finite Re
and follow complex paths. The same is true for EQ2, the upper branch of NBCW. The
numerical evidence thus weighs against the possibility of an asymptotic analysis of these
solutions based on streamwise Fourier harmonics.

4.3. Critical layers

The development of critical layers is an important consequence of the separation of scales
in the streamwise Fourier modes (Wang et al. 2007; Hall & Sherwin 2010). The critical
layer is the surface on which the mean streamwise fluid velocity matches the wavespeed,
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(a) (c) (e)

(b) (d) (f)

Figure 15. Critical layers of spanwise periodic equilibria of plane Couette flow.
(a,b) NBCW at Re = 1000 and 30000, (c,d) EQ7 at Re = 1000 and 30000, and (e,f) EQ8 at
Re = 1000 and 3000 for streamwise, spanwise wavenumbers α, γ = 1, 2. Dashed contour lines
show total streamwise velocity at levels utot = ±{0, 0.25, 0.50, 0.75}. The critical layer where
utot(y, z) = c = 0 is shown with a thick solid contour line. Thin solid contour lines show the
autoscaled magnitude of the fundamental Fourier harmonic, |û1|. The horizontal and vertical
coordinates are z, y respectively.

i.e. ûtot,0(y, z) = c. When higher harmonics become negligible and the roll velocities
v̂0, ŵ0 are small compared to the streaky streamwise velocity ûtot,0, the equation for the
fundamental mode simplifies to

[iα(ûtot,0 − c)û1 + (û1 · ∇ûtot,0)ex] eiθ = ∇(p̂1e
iθ) +Re−1∇2(û1e

iθ) (4.8)

As argued by Wang et al. (2007), for large Re the fundamental harmonic û1 concentrates
in a region of thickness δ = Re−1/3 about the critical layer, in which (4.8) is dominated
by a balance between its first and last terms. For a point x in this region and xc nearby
on the critical layer, this requires a balance of α(ûtot,0(x) − c) ≈ α(x − xc) · ∇ûtot,0

against Re−1∇2. If δ ∼ |x − xc| is the thickness of the region, the balance requires
αδ|∇ûtot,0| ∼ Re−1δ−2 or δ = (α|∇ûtot,0|Re)−1/3.

Figure 15 illustrates the development of the critical layer for three spatially periodic
equilibria of plane Couette flow. For equilibria, the wavespeed vanishes, so the critical
layer in these plots is the surface y = f(z) on which utot(y, z) = 0. For NBCW, shown
in figure 15(a,b), the height of the critical layer varies in z, and its thickness δ decreases
as Re−1/3 between (a) Re = 1000 and (b) Re = 30000. Figure 15(a,b) largely duplicates
figures 2 and 3 of Wang et al. (2007); however we note that our plots show contourlines
of |û1| rather than just the vertical component, |v̂1|, and so more clearly convey the fact
that, for NBCW, the concentration of the fundamental mode is spread almost uniformly
over the entire critical layer.

The critical layers for EQ7 and its upper branch EQ8 are markedly different (fig-
ure 15(c,d) and (e,f)). First, the critical layer for these solutions is the line y = 0. This
follows from their σxy symmetry, i.e. [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z). Under
this symmetry the x-average of the perturbation velocity and total velocity vanishes on
y = 0. We note that some of the complexity of Hall & Sherwin (2010)’s analysis results
from the need to work in a coordinate system aligned with the curved criticial layer;
for EQ7 and EQ8 this complexity would be eliminated. Second, the fundamental mode
û1 concentrates not uniformly over the whole critical layer, but apparently on isolated
spots within it. Third, EQ8 seems to form a critical layer at Re = 2000, even though its
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(a) (c)

(b) (d)

Figure 16. Critical layers of spanwise localized equilibria of plane Couette flow.
(a,b) EQ7-1 at Re = 1000 and 30000 and (c,d) EQ7-2 at Re = 1000 and 30000 for streamwise
wavenumber α = 1, with y vertical and z horizontal. Plotting conventions are the same as
figure 15. The z ∈ [−π,π] subset of the full [−3π, 3π] computational domain is shown.

(a) (c)

(b) (d)

Figure 17. Critical layers of spanwise localized traveling waves of channel flow. (a,b)
TW1-1 at Re = 2000 and 30000 and (c,d) TW2-1 at Re = 2000 and 20000 for streamwise
wavenumber α = 1, with y vertical and z horizontal. Plotting conventions are the same as
figure 15 except total streamwise velocity contours are shown at levels utot = {0.1, 0.3, . . . , 0.9}.
The z ∈ [−π,π] subset of the full [−3π, 3π] computational domain is shown.

scale separation is much poorer and its large-Re limit does not appear to exist (we were
unable to continue it beyond Re = 3000).

Figure 16 shows that the critical layer structure of EQ7 carries over directly to its
spanwise-localized counterparts EQ7-1 and EQ7-2, with tapering to laminar flow at large
|z|. In particular the isolated concentrations û1 on the critical layer can be seen, by com-
parison with figure 5, to result from the first-harmonic x variations of the y, z-localized
and concentrated vortex structures. Figure 17(a,b) shows that EQ7 and EQ7-1’s critical
layer structure carries over to TW1-1, in two copies mirrored symmetrically about y = 0.
The channel traveling waves have a nonzero wavespeed c and lack EQ7’s σxy symmetry,
and therefore have a critical layer ûtot,0(y, z)− c = 0 whose height varies in z.

Figure 17(c,d) shows critical layer development for the y-asymmetric channel traveling
wave TW2-1. Note that y-asymmetry increases while y and z length scales decrease with
increasing Re. In particular, û1 concentrates in a smaller region that approaches the
wall as Re increases. An obvious question is whether this represents a near-wall coherent
structure that is constant in wall units. We intend to address this question in future
work. For the time being we note that the behavior illustrated in figure 17(c,d) is still
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subject to a prescribed length scale in the form of the streamwise wavelength α, and that
this prescription must be removed, by streamwise localization or proper scaling with Re,
in order for the lengthscales to be determined naturally.

5. Conclusions

We have found a number of new spanwise-localized equilibrium solutions of plane
Couette flow and traveling-wave solutions of channel flow, and additionally a few spanwise
periodic solutions of channel flow incidental to the construction of the localized solutions.
The spanwise localized solutions consist of a core region that closely resembles a spanwise
periodic solution, a transition region, and exponentially decaying tails. The decay rate
of the tails is e−α|z|, and their structure is determined by solely by the streamwise
wavenumber, the laminar flow profile, and the wavespeed, and is otherwise independent
of the structure of the core region. The solutions related to Itano & Generalis (2009) and
Gibson et al. (2009)’s HVS/EQ7 display clear scale separation and asymptotic scaling
in streamwise Fourier harmonics, suggesting that they are amenable to analysis via a
reduced-order PDE retaining only a few harmonics.

Several solutions, namely TW2-1 and TW2-2, capture particularly isolated and elemen-
tal exact coherent structures in the near-wall of shear flows, which suggestively resemble
structures previously identified in numerical simulations Jeong et al. (1997) and analyzed
in terms of transient growth mechanisms by Schoppa & Hussain (2002). These solutions
consist of long bands of concentrated vortices near the walls, with alternating orienta-
tion, and roughly aligned with the streamwise axis but tilting slightly in the spanwise
and wall-normal directions. The concentrated vortices near the walls are centered over
sinuous low-speed streaks and flanked by high-speed streaks very near the walls, and oth-
erwise surrounded by very large regions where the streamwise velocity is reduced relative
to the laminar background. These solutions capture, as exact time-independent solutions
of Navier-Stokes, the process by which near-wall vortices exchange momentum between
the wall and core regions of shear flows and thereby increase drag.
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Cvitanović, P. & Gibson, J. F. 2010 Geometry of turbulence in wall-bounded shear flows:
Periodic orbits. Phys. Scr. T 142, 014007.

Daviaud, F., Hegseth, J. & Berge, P. 1992 Subcritical transition to turbulence in plane
Couette flow. Phys. Rev. Lett. 69, 2511–2514.

Deguchi, K., Hall, P. & Walton, A. 2013 The emergence of localized vortex-wave interaction
states in plane Couette flow. J. Fluid Mech. 721, 58–85.

Dennis, J.E. & Schnabel, R.B. 1996 Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. SIAM.

Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008 Relative periodic orbits in transi-
tional pipe flow. Phys. Fluids 20, 114102, arXiv:0807.2580.

Duguet, Y., Schlatter, P. & Henningson, D. 2009 Localized edge states in plane Couette
flow. Phys. Fluids 21, 111701.

Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.

Gibson, J. F. 2013 Channelflow: a spectral Navier-Stokes simulator in C++. Tech. Rep.. Univ.
New Hampshire, www.channelflow.org.
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