1. Write one line of Matlab code that returns the even numbers from 48 to 764, inclusive.

2. Given a matrix A, write one line of Matlab code that returns a matrix consisting of the 3rd, 11th, and 1st columns of A, in that order.

3. Write a few lines of Matlab code that would plot $y = x^{-2} \sin 4x - 1$ versus x for $1 \le x \le 2\pi$ as a magenta dashed line with a superimposed grid. Label your axes.

4. Calculate the product of the matrix and vector.

$$\begin{bmatrix} 2 & 1 & 0 \\ -1 & 3 & 4 \\ 5 & 0 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 + 3 + 0 \\ -3 + 9 + 4 \\ 0 + 0 + 6 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \\ 16 \end{bmatrix}$$

5. Write a few lines of Matlab code that could calculate the product of the matrix and vector.

$$\mathbf{y} = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 3 & 4 \\ 5 & 0 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \mathbf{z}$$

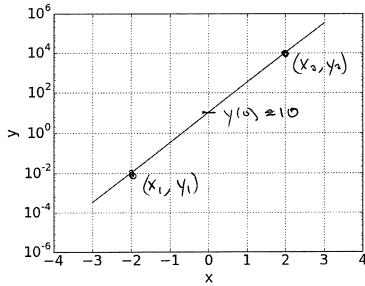
$$A = [2 \mid 0; -1 \mid 3 \mid 4; 5 \mid 0 \mid 6];$$

 $X = [2; 3; 1];$

6. Write two lines of Matlab code that would evaluate this sum.

$$\sum_{n=0}^{10} \frac{n}{(n+1)^2}$$

7. Write Matlab code that would solve the system of equations.


$$3y - x + 4z - 6 = 0$$
$$5z + 2x - 7 = 0$$

$$y - 2x + 1 = 0$$

mod lub cocle

$$X = A \setminus b$$

8. What is y as a function of x? Give an explicit formula for y(x) with specific numerical constants.

logy is linear in x therefore

 $| \log y = mx + b$ $| y = 10^{mx + b}$ $| y = C10^{mx}$

mis the slope of logy us x

$$M = \frac{\log y_0 - \log y_1}{x_2 - x_1} = \frac{4 - (-2)}{2 - (-2)} = \frac{6}{4} = \frac{3}{2}$$

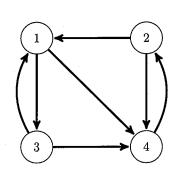
 $y(0) = c_{10}m.01 = c$ so c = 10, judging from graph

 $y(x) = 10.10^{3x/a} \text{ or } 10^{\frac{3}{2}x+1}$

Math 445 sample exam #1

Name: J. Cham

9. Write Matlab code that defines a function named myfactorial that uses a for loop to compute n! (the factorial of n) according to the formula


$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1 = \prod_{k=1}^{n} k$$

function $p = my factorial(n)$
 $p = 1;$

for $k = 1: N$
 $p = p * k;$

and

10 (a) Write down the matrix A for hamster dynamics $x^{n+1} = A x^n$, where $x = (x_1, x_2, x_3, x_4)$, assuming hamsters choose and run through a random tunnel from their current house at each time step.

(b) Write a few lines of Matlab code that would estimate the steady-state distribution of hamsters $x = \lim_{n \to \infty} x^n$ from twenty iterations of $x^{n+1} = A x^n$.

$$A = [0 \ 1/3 \ 1/3 \ 0; \ 0 \ 0 \ 0]; \ 1/3 \ 0 \ 0; \ 1/3 \ 1/2 \ 1/2];$$
 $X = [100; \ 0; \ 0; \ 0]; \ 0; \ or any other initial distrib. You like

for $n = 1:30$
 $x = A * x;$

and$