Problems 1-6. Find the general solution of the differential equation using the method of judicious guessing.

1. $y^{\prime \prime}+y^{\prime}-6 y=2 x$

Solution. First we find the complementary solution y_{c}, i.e., the solution to the associated homogeneous equation $y^{\prime \prime}+y^{\prime}-6 y=0$:

$$
\begin{aligned}
\lambda^{2}+\lambda-6 & =0 \\
(\lambda+3)(\lambda-2) & =0 \\
\lambda_{1} & =-3, \quad \lambda_{2}=2 \quad \Longrightarrow \quad y_{c}=C_{1} e^{-3 x}+C_{2} e^{2 x} .
\end{aligned}
$$

Next we find the particular solution y_{p}. We guess

$$
\begin{aligned}
y_{p} & =A x+B \\
\Longrightarrow \quad y_{p}^{\prime} & =A \\
\Longrightarrow \quad y_{p}^{\prime \prime} & =0 .
\end{aligned}
$$

Plugging y_{p} into the ODE and rearranging terms gives

$$
-6 A x+(A-6 B)=2 x
$$

which yields equations

$$
\begin{aligned}
-6 A & =2 \\
A-6 B & =0 .
\end{aligned}
$$

Solving this system gives

$$
A=-\frac{1}{3} \quad B=-\frac{1}{18} .
$$

Therefore

$$
y_{p}=-\frac{x}{3}-\frac{1}{18}
$$

and the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{-3 x}+C_{2} e^{2 x}-\frac{x}{3}-\frac{1}{18} .
\end{aligned}
$$

2. $y^{\prime \prime}-10 y^{\prime}+25 y=30 x+3$

Solution. First we find the complementary solution y_{c} :

$$
\begin{aligned}
\lambda^{2}-10 \lambda+25 & =0 \\
(\lambda-5)^{2} & =0 \\
\lambda_{1} & =\lambda_{2}=5 \quad \Longrightarrow \quad y_{c}=C_{1} e^{5 x}+C_{2} x e^{5 x} .
\end{aligned}
$$

Next we find the particular solution y_{p}. We guess

$$
\begin{aligned}
y_{p} & =A x+B \\
\Longrightarrow \quad y_{p}^{\prime} & =A \\
\Longrightarrow \quad y_{p}^{\prime \prime} & =0 .
\end{aligned}
$$

Plugging y_{p} into the ODE and rearranging terms gives

$$
25 A x+(-10 A+25 B)=30 x+3
$$

while yields equations

$$
\begin{aligned}
25 A & =30 \\
-10 A+25 B & =3
\end{aligned}
$$

Solving this system gives

$$
A=\frac{6}{5} \quad B=\frac{3}{5}
$$

Therefore

$$
y_{p}=\frac{6 x}{5}+\frac{3}{5}
$$

and the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{5 x}+C_{2} x e^{5 x}+\frac{6 x}{5}+\frac{3}{5} .
\end{aligned}
$$

3. $4 y^{\prime \prime}-4 y^{\prime}-3 y=\cos (2 x)$

Solution. First we find the complementary solution y_{c} :

$$
\begin{aligned}
4 \lambda^{2}-4 \lambda-3 & =0 \\
(2 \lambda+1)(2 \lambda-3) & =0 \\
\lambda_{1} & =-\frac{1}{2}, \quad \lambda_{2}=\frac{3}{2} \quad \Longrightarrow \quad y_{c}=C_{1} e^{-x / 2}+C_{2} e^{3 x / 2} .
\end{aligned}
$$

Next we find the particular solution y_{p}. We guess

$$
\begin{aligned}
y_{p} & =A \cos (2 x)+B \sin (2 x) \\
\Longrightarrow \quad y_{p}^{\prime} & =-2 A \sin (2 x)+2 B \cos (2 x) \\
\Longrightarrow \quad y_{p}^{\prime \prime} & =-4 A \cos (2 x)-4 B \sin (2 x) .
\end{aligned}
$$

Plugging y_{p} into the ODE and simplifying gives

$$
(-19 A-8 B) \cos (2 x)+(8 A-19 B) \sin (2 x)=\cos (2 x),
$$

which yields the equations

$$
\begin{aligned}
-19 A-8 B & =1 \\
8 A-19 B & =0 .
\end{aligned}
$$

Solving this system gives

$$
A=-\frac{19}{425} \quad B=-\frac{8}{425} .
$$

Therefore

$$
y_{p}=-\frac{19}{425} \cos (2 x)-\frac{8}{425} \sin (2 x)
$$

and the general solution is

$$
\begin{aligned}
y & =y_{p}+y_{c} \\
& =C_{1} e^{-x / 2}+C_{2} e^{3 x / 2}-\frac{19}{425} \cos (2 x)-\frac{8}{425} \sin (2 x) .
\end{aligned}
$$

4. $y^{\prime \prime}-y^{\prime}+y / 4=3+e^{x / 2}$

Solution. To eliminate fractions, we multiply both sides of the equation by 4:

$$
4 y^{\prime \prime}-4 y^{\prime}+y=12+4 e^{x / 2}
$$

We then find the complementary solution y_{c} :

$$
\begin{aligned}
4 \lambda^{2}-4 \lambda+1 & =0 \\
(2 \lambda-1)^{2} & =0 \\
\lambda_{1} & =\lambda_{2}=\frac{1}{2} \quad \Longrightarrow \quad y_{c}=C_{1} e^{x / 2}+C_{2} x e^{x / 2} .
\end{aligned}
$$

Since the RHS of the ODE is the sum of functions from two different families, we find the particular solution in two steps. First we find a solution $y_{p_{1}}$ to the equation

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}+y=12 \tag{1}
\end{equation*}
$$

We guess

$$
y_{p_{1}}=A \quad \Longrightarrow \quad y_{p_{1}}^{\prime}=y_{p_{1}}^{\prime \prime}=0
$$

Plugging $y_{p_{1}}$ into (1) gives $A=12$, hence

$$
y_{p_{1}}=12
$$

Next we find a solution $y_{p_{2}}$ to the equation

$$
\begin{equation*}
4 y^{\prime \prime}-4 y^{\prime}+y=e^{x / 2} \tag{2}
\end{equation*}
$$

The obvious first guess, $y_{p_{2}}=B e^{x / 2}$, won't work because it duplicates a term in y_{c}. Our second guess, $y_{p_{2}}=B x e^{x / 2}$, runs into the same issue. So we use

$$
\begin{aligned}
y_{p_{2}} & =B x^{2} e^{x / 2} \\
\Longrightarrow \quad y_{p_{2}}^{\prime} & =2 B x e^{x / 2}+\frac{1}{2} B x^{2} e^{x / 2} \\
\Longrightarrow \quad y_{p_{2}}^{\prime \prime} & =2 B e^{x / 2}+2 B x e^{x / 2}+\frac{1}{4} B x^{2} e^{x / 2} .
\end{aligned}
$$

Plugging $y_{p_{2}}$ into (2) and simplifying gives $B=1 / 2$, hence

$$
y_{p_{2}}=\frac{1}{2} x^{2} e^{x / 2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p_{1}}+y_{p_{2}} \\
& =C_{1} e^{x / 2}+C_{2} x e^{x / 2}+12+\frac{1}{2} x^{2} e^{x / 2} .
\end{aligned}
$$

5. $y^{\prime \prime}-16 y=2 e^{4 x}$.

Solution. First we find the complementary solution y_{c} :

$$
\begin{aligned}
\lambda^{2}-16 & =0 \\
(\lambda+4)(\lambda-4) & =0 \\
\lambda_{1} & =4, \quad \lambda_{2}=-4 \quad \Longrightarrow \quad y_{c}=C_{1} e^{4 x}+C_{2} e^{-4 x} .
\end{aligned}
$$

Next we find the particular solution y_{p}. Our first guess, $y_{p}=A e^{4 x}$, won't work because it duplicates a term in y_{c}. So instead we guess

$$
\begin{aligned}
y_{p} & =A x e^{4 x} \\
\Longrightarrow \quad y_{p}^{\prime} & =A e^{4 x}+4 A x e^{4 x} \\
\Longrightarrow \quad y_{p}^{\prime \prime} & =8 A e^{4 x}+16 A x e^{4 x} .
\end{aligned}
$$

Plugging y_{p} into the ODE and simplifying gives $A=1 / 4$, hence

$$
y_{p}=\frac{1}{4} x e^{4 x} .
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{4 x}+C_{2} e^{-4 x}+\frac{1}{4} x e^{4 x} .
\end{aligned}
$$

6. $y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos (2 x)$

Solution. First we find the complementary solution y_{c} :

$$
\begin{aligned}
\lambda^{2}-2 \lambda+5 & =0 \\
\lambda & =\frac{2 \pm \sqrt{-16}}{2} \\
& =\frac{2 \pm 4 i}{2} \\
& =1 \pm 2 i \quad \Longrightarrow \quad y_{c}=C_{1} e^{x} \cos (2 x)+C_{2} e^{x} \sin (2 x) .
\end{aligned}
$$

Next we find the particular solution y_{p}. The obvious first guess, $y_{p}=e^{x}(A \cos (2 x)+B \sin (2 x))$, won't work because it duplicates a term in y_{c}. So instead we guess

$$
y_{p}=x e^{x}(A \cos (2 x)+B \sin (2 x)) .
$$

To simplify calculations, let $s=A \cos (2 x)+B \sin (2 x)$ so that $y_{p}=x e^{x} s$. Then $s^{\prime \prime}=-4 s$ and we get

$$
\begin{aligned}
y_{p}^{\prime} & =e^{x} s+x e^{x} s+x e^{x} s^{\prime} \\
y_{p}^{\prime \prime} & =2 e^{x} s+2 e^{x} s^{\prime}-3 x e^{x} s+2 x e^{x} s^{\prime}
\end{aligned}
$$

Plugging y_{p} into the ODE and simplifying gives

$$
\begin{aligned}
2 e^{x} s^{\prime} & =e^{x} \cos (2 x) \\
2 s^{\prime} & =\cos (2 x) \\
-4 A \sin (2 x)+4 B \cos (2 x) & =\cos (2 x) .
\end{aligned}
$$

This gives $A=0$ and $B=1 / 4$, hence

$$
y_{p}=\frac{1}{4} x e^{x} \sin (2 x) .
$$

The general solution is then

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{x} \cos (2 x)+C_{2} e^{x} \sin (2 x)+\frac{1}{4} x e^{x} \sin (2 x) .
\end{aligned}
$$

Problems 7 and 8. Solve the initial value problem.
7. $y^{\prime \prime}+4 y^{\prime}+4 y=(3+x) e^{-2 x}, \quad y(0)=2, \quad y^{\prime}(0)=5$.

Solution. First we find the complementary solution y_{c} :

$$
\begin{aligned}
\lambda^{2}+4 \lambda+4 & =0 \\
(\lambda+2)^{2} & =0 \\
\lambda_{1} & =\lambda_{2}=-2 \quad \Longrightarrow \quad y_{c}=C_{1} e^{-2 x}+C_{2} x e^{-2 x} .
\end{aligned}
$$

Next we find the particular solution y_{p}. Our first guess, $y_{p}=(A x+B) e^{-2 x}$, won't work because it duplicates a term in y_{c}. So we multiply this guess by powers of x until we eliminate duplicates; this requires

$$
\begin{aligned}
y_{p} & =x^{2}(A x+B) e^{-2 x}=\left(A x^{3}+B x^{2}\right) e^{-2 x} \\
\Longrightarrow \quad y_{p}^{\prime} & =-2 y_{p}+\left(3 A x^{2}+2 B x\right) e^{-2 x} \\
\Longrightarrow \quad y_{p}^{\prime \prime} & =4 y_{p}-4\left(3 A x^{2}+2 B x\right) e^{-2 x}+(6 A x+2 B) e^{-2 x} .
\end{aligned}
$$

Plugging y_{p} into the ODE and simplifying gives

$$
6 A x+2 B=3+x
$$

Solving this system gives $A=1 / 6, B=3 / 2$, hence

$$
y_{p}=\left(\frac{x^{3}}{6}+\frac{3 x^{2}}{2}\right) e^{-2 x} .
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} x e^{-2 x}+\left(\frac{x^{3}}{6}+\frac{3 x^{2}}{2}\right) e^{-2 x} .
\end{aligned}
$$

The value $y(0)=2$ gives $C_{1}=2$, while the value $y^{\prime}(0)=5$ gives $C_{2}=9$. Thus the solution to the IVP is

$$
y=2 e^{-2 x}+9 x e^{-2 x}+\left(\frac{x^{3}}{6}+\frac{3 x^{2}}{2}\right) e^{-2 x}
$$

8. $y^{\prime \prime}-y=\cosh x, \quad y(0)=2, \quad y^{\prime}(0)=12$.

Solution. Note that $\cosh x=e^{x} / 2+e^{-x} / 2$, so we can rewrite the ODE as

$$
y^{\prime \prime}-y=\frac{1}{2} e^{x}+\frac{1}{2} e^{-x} .
$$

First we find the complementary solution y_{c} :

$$
\begin{aligned}
\lambda^{2}-1 & =0 \\
\lambda^{2} & =1 \\
\lambda_{1} & =1, \quad \lambda_{2}=-1 \quad \Longrightarrow \quad y_{c}=C_{1} e^{x}+C_{2} e^{-x} .
\end{aligned}
$$

We find the particular solution in two steps. First, we find a solution $y_{p_{1}}$ to the equation

$$
\begin{equation*}
y^{\prime \prime}-y=\frac{1}{2} e^{x} . \tag{1}
\end{equation*}
$$

Our first guess, $y_{p_{1}}=A e^{x}$, won't work because it duplicates a term in y_{c}. So instead we guess

$$
\begin{aligned}
& y_{p_{1}}=A x e^{x} \\
& \Longrightarrow \quad y_{p_{1}}^{\prime}=y_{p_{1}}+A e^{x} \\
& \Longrightarrow y_{p_{1}}^{\prime \prime}=y_{p_{1}}+2 A e^{x} .
\end{aligned}
$$

Plugging $y_{p_{1}}$ into (1) and simplifying gives

$$
2 A=\frac{1}{2} \quad \Longrightarrow \quad A=\frac{1}{4} . \quad \Longrightarrow \quad y_{p_{1}}=\frac{1}{4} x e^{x} .
$$

Next we find a solution $y_{p_{2}}$ to the equation

$$
\begin{equation*}
y^{\prime \prime}-y=\frac{1}{2} e^{-x} . \tag{2}
\end{equation*}
$$

Our first guess, $y_{p_{2}}=B e-x$, won't work because it duplicates a term in y_{c}. So instead we guess

$$
\begin{aligned}
y_{p_{2}} & =B x e^{-x} \\
\Longrightarrow \quad y_{p_{2}}^{\prime} & =-y_{p_{2}}+B e^{-x} \\
\Longrightarrow \quad y_{p_{2}}^{\prime \prime} & =y_{p_{2}}-2 B e^{-x} .
\end{aligned}
$$

Plugging $y_{p_{2}}$ into (2) and simplifying gives

$$
-2 B=\frac{1}{2} \quad \Longrightarrow \quad B=-\frac{1}{4} \quad \Longrightarrow \quad y_{p_{2}}=-\frac{1}{4} x e^{-x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{c}+y_{p_{1}}+y_{p_{2}} \\
& =C_{1} e^{x}+C_{2} e^{-x}+\frac{1}{4} x e^{x}-\frac{1}{4} x e^{-x} .
\end{aligned}
$$

Plugging in the initial values gives us a system of equations

$$
\begin{aligned}
& C_{1}+C_{2}=2 \\
& C_{1}-C_{2}=12 .
\end{aligned}
$$

Solving this system gives $C_{1}=7$ and $C_{2}=-5$. Therefore the solution to the IVP is

$$
y=7 e^{x}-5 e^{-x}+\frac{1}{4} x e^{x}-\frac{1}{4} x e^{-x}
$$

